These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23451890)

  • 1. Energy functions in de novo protein design: current challenges and future prospects.
    Li Z; Yang Y; Zhan J; Dai L; Zhou Y
    Annu Rev Biophys; 2013; 42():315-35. PubMed ID: 23451890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving computational protein design by using structure-derived sequence profile.
    Dai L; Yang Y; Kim HR; Zhou Y
    Proteins; 2010 Aug; 78(10):2338-48. PubMed ID: 20544969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein structure evaluation using an all-atom energy based empirical scoring function.
    Narang P; Bhushan K; Bose S; Jayaram B
    J Biomol Struct Dyn; 2006 Feb; 23(4):385-406. PubMed ID: 16363875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo backbone scaffolds for protein design.
    MacDonald JT; Maksimiak K; Sadowski MI; Taylor WR
    Proteins; 2010 Apr; 78(5):1311-25. PubMed ID: 20017215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control over overall shape and size in de novo designed proteins.
    Lin YR; Koga N; Tatsumi-Koga R; Liu G; Clouser AF; Montelione GT; Baker D
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):E5478-85. PubMed ID: 26396255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in structural proteomics for protein structure determination.
    Liu HL; Hsu JP
    Proteomics; 2005 May; 5(8):2056-68. PubMed ID: 15846841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a novel globular protein fold with atomic-level accuracy.
    Kuhlman B; Dantas G; Ireton GC; Varani G; Stoddard BL; Baker D
    Science; 2003 Nov; 302(5649):1364-8. PubMed ID: 14631033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution protein design with backbone freedom.
    Harbury PB; Plecs JJ; Tidor B; Alber T; Kim PS
    Science; 1998 Nov; 282(5393):1462-7. PubMed ID: 9822371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind.
    London N; Ambroggio X
    J Struct Biol; 2014 Feb; 185(2):136-46. PubMed ID: 23558036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of a protein crystal.
    Lanci CJ; MacDermaid CM; Kang SG; Acharya R; North B; Yang X; Qiu XJ; DeGrado WF; Saven JG
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7304-9. PubMed ID: 22538812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein design: a hierarchic approach.
    Bryson JW; Betz SF; Lu HS; Suich DJ; Zhou HX; O'Neil KT; DeGrado WF
    Science; 1995 Nov; 270(5238):935-41. PubMed ID: 7481798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo design of the hydrophobic cores of proteins.
    Desjarlais JR; Handel TM
    Protein Sci; 1995 Oct; 4(10):2006-18. PubMed ID: 8535237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy functions for protein design: adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity.
    Pokala N; Handel TM
    J Mol Biol; 2005 Mar; 347(1):203-27. PubMed ID: 15733929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y; Beveridge DL
    Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray vs. NMR structures as templates for computational protein design.
    Schneider M; Fu X; Keating AE
    Proteins; 2009 Oct; 77(1):97-110. PubMed ID: 19422060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SELECTpro: effective protein model selection using a structure-based energy function resistant to BLUNDERs.
    Randall A; Baldi P
    BMC Struct Biol; 2008 Dec; 8():52. PubMed ID: 19055744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction.
    Siegel JB; Zanghellini A; Lovick HM; Kiss G; Lambert AR; St Clair JL; Gallaher JL; Hilvert D; Gelb MH; Stoddard BL; Houk KN; Michael FE; Baker D
    Science; 2010 Jul; 329(5989):309-13. PubMed ID: 20647463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.