These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 23452191)
1. Thermal adaptation and acclimation of ectotherms from differing aquatic climates. Narum SR; Campbell NR; Meyer KA; Miller MR; Hardy RW Mol Ecol; 2013 Jun; 22(11):3090-7. PubMed ID: 23452191 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic response to heat stress among ecologically divergent populations of redband trout. Narum SR; Campbell NR BMC Genomics; 2015 Feb; 16(1):103. PubMed ID: 25765850 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Chen Z; Farrell AP; Matala A; Narum SR Mol Ecol; 2018 Feb; 27(3):659-674. PubMed ID: 29290103 [TBL] [Abstract][Full Text] [Related]
4. Adaptation of redband trout in desert and montane environments. Narum SR; Campbell NR; Kozfkay CC; Meyer KA Mol Ecol; 2010 Nov; 19(21):4622-37. PubMed ID: 20880387 [TBL] [Abstract][Full Text] [Related]
5. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change. Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918 [TBL] [Abstract][Full Text] [Related]
6. Whole genome resequencing identifies local adaptation associated with environmental variation for redband trout. Andrews KR; Seaborn T; Egan JP; Fagnan MW; New DD; Chen Z; Hohenlohe PA; Waits LP; Caudill CC; Narum SR Mol Ecol; 2023 Feb; 32(4):800-818. PubMed ID: 36478624 [TBL] [Abstract][Full Text] [Related]
7. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish. Komoroske LM; Connon RE; Jeffries KM; Fangue NA Mol Ecol; 2015 Oct; 24(19):4960-81. PubMed ID: 26339983 [TBL] [Abstract][Full Text] [Related]
8. Differential Expression of Genes that Control Respiration Contribute to Thermal Adaptation in Redband Trout (Oncorhynchus mykiss gairdneri). Garvin MR; Thorgaard GH; Narum SR Genome Biol Evol; 2015 May; 7(6):1404-14. PubMed ID: 25943341 [TBL] [Abstract][Full Text] [Related]
9. Metabolism, swimming performance, and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): evidence for phenotypic differences in physiological function. Gamperl AK; Rodnick KJ; Faust HA; Venn EC; Bennett MT; Crawshaw LI; Keeley ER; Powell MS; Li HW Physiol Biochem Zool; 2002; 75(5):413-31. PubMed ID: 12529843 [TBL] [Abstract][Full Text] [Related]
10. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. Fangue NA; Hofmeister M; Schulte PM J Exp Biol; 2006 Aug; 209(Pt 15):2859-72. PubMed ID: 16857869 [TBL] [Abstract][Full Text] [Related]
11. Thermal acclimation alters both basal heat shock protein gene expression and the heat shock response in juvenile lake whitefish (Coregonus clupeaformis). Manzon LA; Zak MA; Agee M; Boreham DR; Wilson JY; Somers CM; Manzon RG J Therm Biol; 2022 Feb; 104():103185. PubMed ID: 35180964 [TBL] [Abstract][Full Text] [Related]
12. Short Communication: Effect of heat stress on heat-shock protein (Hsp60) mRNA expression in rainbow trout Oncorhynchus mykiss. Shi HN; Liu Z; Zhang JP; Kang YJ; Wang JF; Huang JQ; Wang WM Genet Mol Res; 2015 May; 14(2):5280-6. PubMed ID: 26125723 [TBL] [Abstract][Full Text] [Related]
13. Physiological and genomic signatures of evolutionary thermal adaptation in redband trout from extreme climates. Chen Z; Farrell AP; Matala A; Hoffman N; Narum SR Evol Appl; 2018 Oct; 11(9):1686-1699. PubMed ID: 30344636 [TBL] [Abstract][Full Text] [Related]
14. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs. Tomanek L J Exp Biol; 2010 Mar; 213(6):971-9. PubMed ID: 20190122 [TBL] [Abstract][Full Text] [Related]
15. Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss. Wang Y; Liu Z; Li Z; Shi H; Kang Y; Wang J; Huang J; Jiang L Fish Physiol Biochem; 2016 Apr; 42(2):701-10. PubMed ID: 26614500 [TBL] [Abstract][Full Text] [Related]
16. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. Gerken AR; Eller OC; Hahn DA; Morgan TJ Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817 [TBL] [Abstract][Full Text] [Related]
17. Heat shock protein (Hsp70) induced by a mild heat shock slightly moderates plasma osmolarity increases upon salinity transfer in rainbow trout (Oncorhynchus mykiss). Niu CJ; Rummer JL; Brauner CJ; Schulte PM Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):437-44. PubMed ID: 18565799 [TBL] [Abstract][Full Text] [Related]
18. Beta-adrenergic stimulation enhances the heat-shock response in fish. Currie S; Reddin K; McGinn P; McConnell T; Perry SF Physiol Biochem Zool; 2008; 81(4):414-25. PubMed ID: 18507532 [TBL] [Abstract][Full Text] [Related]
19. Chronic social stress impairs thermal tolerance in the rainbow trout (Oncorhynchus mykiss). LeBlanc S; Middleton S; Gilmour KM; Currie S J Exp Biol; 2011 May; 214(Pt 10):1721-31. PubMed ID: 21525319 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome responses to heat stress in the nucleated red blood cells of the rainbow trout (Oncorhynchus mykiss). Lewis JM; Hori TS; Rise ML; Walsh PJ; Currie S Physiol Genomics; 2010 Aug; 42(3):361-73. PubMed ID: 20551145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]