BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23452237)

  • 1. Characterization of a pre-export enzyme-chaperone complex on the twin-arginine transport pathway.
    Dow JM; Gabel F; Sargent F; Palmer T
    Biochem J; 2013 May; 452(1):57-66. PubMed ID: 23452237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic GTPase activity of a bacterial twin-arginine translocation proofreading chaperone induced by domain swapping.
    Guymer D; Maillard J; Agacan MF; Brearley CA; Sargent F
    FEBS J; 2010 Jan; 277(2):511-25. PubMed ID: 20064164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal peptide protection by specific chaperone.
    Genest O; Seduk F; Ilbert M; Méjean V; Iobbi-Nivol C
    Biochem Biophys Res Commun; 2006 Jan; 339(3):991-5. PubMed ID: 16337610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone.
    Buchanan G; Maillard J; Nabuurs SB; Richardson DJ; Palmer T; Sargent F
    FEBS Lett; 2008 Dec; 582(29):3979-84. PubMed ID: 19013157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the TorD signal peptide chaperone on Tat-dependent protein translocation.
    Bageshwar UK; DattaGupta A; Musser SM
    PLoS One; 2021; 16(9):e0256715. PubMed ID: 34499687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific inhibition of the translocation of a subset of Escherichia coli TAT substrates by the TorA signal peptide.
    Chanal A; Santini CL; Wu LF
    J Mol Biol; 2003 Mar; 327(3):563-70. PubMed ID: 12634052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal peptide-chaperone interactions on the twin-arginine protein transport pathway.
    Hatzixanthis K; Clarke TA; Oubrie A; Richardson DJ; Turner RJ; Sargent F
    Proc Natl Acad Sci U S A; 2005 Jun; 102(24):8460-5. PubMed ID: 15941830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinating assembly and export of complex bacterial proteins.
    Jack RL; Buchanan G; Dubini A; Hatzixanthis K; Palmer T; Sargent F
    EMBO J; 2004 Oct; 23(20):3962-72. PubMed ID: 15385959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins.
    Ilbert M; Méjean V; Iobbi-Nivol C
    Microbiology (Reading); 2004 Apr; 150(Pt 4):935-943. PubMed ID: 15073303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The h-region of twin-arginine signal peptides supports productive binding of bacterial Tat precursor proteins to the TatBC receptor complex.
    Ulfig A; Fröbel J; Lausberg F; Blümmel AS; Heide AK; Müller M; Freudl R
    J Biol Chem; 2017 Jun; 292(26):10865-10882. PubMed ID: 28515319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexpression of TorD enhances the transport of GFP via the TAT pathway.
    Li SY; Chang BY; Lin SC
    J Biotechnol; 2006 Apr; 122(4):412-21. PubMed ID: 16253369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding.
    Ulfig A; Freudl R
    J Biol Chem; 2018 May; 293(19):7281-7299. PubMed ID: 29593092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif.
    Buchanan G; Sargent F; Berks BC; Palmer T
    Arch Microbiol; 2001 Dec; 177(1):107-12. PubMed ID: 11797051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the quality control mechanism of the
    Sutherland GA; Grayson KJ; Adams NBP; Mermans DMJ; Jones AS; Robertson AJ; Auman DB; Brindley AA; Sterpone F; Tuffery P; Derreumaux P; Dutton PL; Robinson C; Hitchcock A; Hunter CN
    J Biol Chem; 2018 May; 293(18):6672-6681. PubMed ID: 29559557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli.
    Pommier J; Méjean V; Giordano G; Iobbi-Nivol C
    J Biol Chem; 1998 Jun; 273(26):16615-20. PubMed ID: 9632735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway.
    Pérez-Rodríguez R; Fisher AC; Perlmutter JD; Hicks MG; Chanal A; Santini CL; Wu LF; Palmer T; DeLisa MP
    J Mol Biol; 2007 Mar; 367(3):715-30. PubMed ID: 17280684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of signal peptide recognition in tat-dependent bacterial protein translocation.
    Blaudeck N; Sprenger GA; Freudl R; Wiegert T
    J Bacteriol; 2001 Jan; 183(2):604-10. PubMed ID: 11133954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overlapping transport and chaperone-binding functions within a bacterial twin-arginine signal peptide.
    Grahl S; Maillard J; Spronk CA; Vuister GW; Sargent F
    Mol Microbiol; 2012 Mar; 83(6):1254-67. PubMed ID: 22329966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hydrophobic core of twin-arginine signal sequences orchestrates specific binding to Tat-pathway related chaperones.
    Shanmugham A; Bakayan A; Völler P; Grosveld J; Lill H; Bollen YJ
    PLoS One; 2012; 7(3):e34159. PubMed ID: 22479549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA.
    Ilbert M; Méjean V; Giudici-Orticoni MT; Samama JP; Iobbi-Nivol C
    J Biol Chem; 2003 Aug; 278(31):28787-92. PubMed ID: 12766163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.