BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23452241)

  • 1. Effects of sulfate groups on the adsorption and activity of cellulases on cellulose substrates.
    Jiang F; Kittle JD; Tan X; Esker AR; Roman M
    Langmuir; 2013 Mar; 29(10):3280-91. PubMed ID: 23452241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ monitoring of cellulase activity by microgravimetry with a quartz crystal microbalance.
    Hu G; Heitmann JA; Rojas OJ
    J Phys Chem B; 2009 Nov; 113(44):14761-8. PubMed ID: 19827780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content.
    Martín-Sampedro R; Rahikainen JL; Johansson LS; Marjamaa K; Laine J; Kruus K; Rojas OJ
    Biomacromolecules; 2013 Apr; 14(4):1231-9. PubMed ID: 23484974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive sorption kinetics of inhibited endo- and exoglucanases on a model cellulose substrate.
    Maurer SA; Bedbrook CN; Radke CJ
    Langmuir; 2012 Oct; 28(41):14598-608. PubMed ID: 22966968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring.
    Kittle JD; Du X; Jiang F; Qian C; Heinze T; Roman M; Esker AR
    Biomacromolecules; 2011 Aug; 12(8):2881-7. PubMed ID: 21574564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose.
    Zhou Y; Chen H; Qi F; Zhao X; Liu D
    Bioresour Technol; 2015 Apr; 182():136-143. PubMed ID: 25689307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose.
    Mohan T; Kargl R; Doliška A; Ehmann HM; Ribitsch V; Stana-Kleinschek K
    Carbohydr Polym; 2013 Mar; 93(1):191-8. PubMed ID: 23465919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Nonionic Surfactants on Dispersion and Polar Interactions in the Adsorption of Cellulases onto Lignin.
    Jiang F; Qian C; Esker AR; Roman M
    J Phys Chem B; 2017 Oct; 121(41):9607-9620. PubMed ID: 28926703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pre-addition of "blocking" proteins decreases subsequent cellulase adsorption to lignin and enhances cellulose hydrolysis.
    Liu J; Wu J; Lu Y; Zhang H; Hua Q; Bi R; Rojas O; Renneckar S; Fan S; Xiao Z; Saddler J
    Bioresour Technol; 2023 Jan; 367():128276. PubMed ID: 36347476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutron reflectometry and QCM-D study of the interaction of cellulases with films of amorphous cellulose.
    Cheng G; Liu Z; Murton JK; Jablin M; Dubey M; Majewski J; Halbert C; Browning J; Ankner J; Akgun B; Wang C; Esker AR; Sale KL; Simmons BA; Kent MS
    Biomacromolecules; 2011 Jun; 12(6):2216-24. PubMed ID: 21553874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(2):398-406. PubMed ID: 17378581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface structural dynamics of enzymatic cellulose degradation, revealed by combined kinetic and atomic force microscopy studies.
    Eibinger M; Bubner P; Ganner T; Plank H; Nidetzky B
    FEBS J; 2014 Jan; 281(1):275-90. PubMed ID: 24320702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose crystallinity--a key predictor of the enzymatic hydrolysis rate.
    Hall M; Bansal P; Lee JH; Realff MJ; Bommarius AS
    FEBS J; 2010 Mar; 277(6):1571-82. PubMed ID: 20148968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between Cellulolytic Enzymes with Native, Autohydrolysis, and Technical Lignins and the Effect of a Polysorbate Amphiphile in Reducing Nonproductive Binding.
    Fritz C; Ferrer A; Salas C; Jameel H; Rojas OJ
    Biomacromolecules; 2015 Dec; 16(12):3878-88. PubMed ID: 26565921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques.
    Wang QQ; He Z; Zhu Z; Zhang YH; Ni Y; Luo XL; Zhu JY
    Biotechnol Bioeng; 2012 Feb; 109(2):381-9. PubMed ID: 21915856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure.
    Ahola S; Turon X; Osterberg M; Laine J; Rojas OJ
    Langmuir; 2008 Oct; 24(20):11592-9. PubMed ID: 18778090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes.
    Ye Z; Berson RE
    Bioresour Technol; 2014 Sep; 167():582-6. PubMed ID: 25027809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose.
    Selig MJ; Viamajala S; Decker SR; Tucker MP; Himmel ME; Vinzant TB
    Biotechnol Prog; 2007; 23(6):1333-9. PubMed ID: 17973399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.