These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23452438)
1. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation. Hsu C; Huang C; Hao Y; Liu F Nanoscale Res Lett; 2013 Mar; 8(1):113. PubMed ID: 23452438 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of highly active and stable Au-PtCu core-shell nanoparticles for oxygen reduction reaction. Hsu C; Huang C; Hao Y; Liu F Phys Chem Chem Phys; 2012 Nov; 14(42):14696-701. PubMed ID: 23032948 [TBL] [Abstract][Full Text] [Related]
3. Hollow Au Xu H; Wang J; Yan B; Zhang K; Li S; Wang C; Shiraishi Y; Du Y; Yang P Nanoscale; 2017 Sep; 9(35):12996-13003. PubMed ID: 28832040 [TBL] [Abstract][Full Text] [Related]
4. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Chen D; Li C; Liu H; Ye F; Yang J Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550 [TBL] [Abstract][Full Text] [Related]
5. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances. Kuai L; Geng B; Wang S; Sang Y Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and Characterization of Catalytically Active Au Core─Pd Shell Nanoparticles Supported on Alumina. Feng Y; Schaefer A; Hellman A; Di M; Härelind H; Bauer M; Carlsson PA Langmuir; 2022 Oct; 38(42):12859-12870. PubMed ID: 36221959 [TBL] [Abstract][Full Text] [Related]
7. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications. Yang G; Chen D; Lv P; Kong X; Sun Y; Wang Z; Yuan Z; Liu H; Yang J Sci Rep; 2016 Oct; 6():35252. PubMed ID: 27734945 [TBL] [Abstract][Full Text] [Related]
8. One-pot synthesis of Au-M@SiO Hao J; Liu B; Maenosono S; Yang J Sci Rep; 2022 May; 12(1):7615. PubMed ID: 35538150 [TBL] [Abstract][Full Text] [Related]
9. Seed-assisted synthesis of Pd@Au core-shell nanotetrapods and their optical and catalytic properties. Zhao R; Gong M; Zhu H; Chen Y; Tang Y; Lu T Nanoscale; 2014 Aug; 6(15):9273-8. PubMed ID: 24986103 [TBL] [Abstract][Full Text] [Related]
10. Trimetallic Ru@AuPt core-shell nanostructures: The effect of microstrain on CO adsorption and electrocatalytic activity of formic acid oxidation. Hu X; Zou J; Gao H; Kang X J Colloid Interface Sci; 2020 Jun; 570():72-79. PubMed ID: 32145653 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of three-dimensional Au-graphene quantum dots@Pt core-shell dendritic nanoparticles for enhanced methanol electro-oxidation. Yang J; Luo C; He S; Li J; Meng B; Zhang D; Xue Z; Zhou X; Lu X Nanotechnology; 2019 Dec; 30(49):495706. PubMed ID: 31437827 [TBL] [Abstract][Full Text] [Related]
12. Ethanol Electrooxidation Catalyzed by Tungsten Core@Palladium Shell Nanoparticles. Yang Y; Tian M; Li Q; Min Y; Xu Q; Chen S ACS Appl Mater Interfaces; 2019 Aug; 11(34):30968-30976. PubMed ID: 31390184 [TBL] [Abstract][Full Text] [Related]
13. Design of Au@ZnO yolk-shell nanospheres with enhanced gas sensing properties. Li X; Zhou X; Guo H; Wang C; Liu J; Sun P; Liu F; Lu G ACS Appl Mater Interfaces; 2014 Nov; 6(21):18661-7. PubMed ID: 25290085 [TBL] [Abstract][Full Text] [Related]
14. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology. Guo S; Dong S; Wang E Chemistry; 2008; 14(15):4689-95. PubMed ID: 18384027 [TBL] [Abstract][Full Text] [Related]
15. Investigating lattice strain impact on the alloyed surface of small Au@PdPt core-shell nanoparticles. Williams BP; Yaguchi M; Lo WS; Kao CR; Lamontagne LK; Sneed BT; Brodsky CN; Chou LY; Kuo CH; Tsung CK Nanoscale; 2020 Apr; 12(16):8687-8692. PubMed ID: 32267279 [TBL] [Abstract][Full Text] [Related]
16. Hollow palladium nanospheres with porous shells supported on graphene as enhanced electrocatalysts for formic acid oxidation. Wang B; Yang J; Wang L; Wang R; Tian C; Jiang B; Tian M; Fu H Phys Chem Chem Phys; 2013 Nov; 15(44):19353-9. PubMed ID: 24121733 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions. Xie S; Jin M; Tao J; Wang Y; Xie Z; Zhu Y; Xia Y Chemistry; 2012 Nov; 18(47):14974-80. PubMed ID: 23108763 [TBL] [Abstract][Full Text] [Related]
18. Unusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts. Luo L; Zhang L; Henkelman G; Crooks RM J Phys Chem Lett; 2015 Jul; 6(13):2562-8. PubMed ID: 26266734 [TBL] [Abstract][Full Text] [Related]
19. Promoting Effects of Au Submonolayer Shells on Structure-Designed Cu-Pd/Ir Nanospheres: Greatly Enhanced Activity and Durability for Alkaline Ethanol Electro-Oxidation. Luo L; Fu C; Yan X; Shen S; Yang F; Guo Y; Zhu F; Yang L; Zhang J ACS Appl Mater Interfaces; 2020 Jun; 12(23):25961-25971. PubMed ID: 32395980 [TBL] [Abstract][Full Text] [Related]
20. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid. Jiang Y; Lu Y; Han D; Zhang Q; Niu L Nanotechnology; 2012 Mar; 23(10):105609. PubMed ID: 22361468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]