BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 23452518)

  • 1. Arsenic field test kits based on solid-phase fluorescence filter effect induced by silver nanoparticle formation.
    Yang W; Ye L; Wu Y; Wang X; Ye S; Deng Y; Huang K; Luo H; Zhang J; Zheng C
    J Hazard Mater; 2024 May; 470():134038. PubMed ID: 38552392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Nanotubes Decorated with Coordination Polymers for Fluorescence Detection of Heavy-Metal Ions and Nitroaromatic Chemicals.
    Salem MAS; Khan AM; Manea YK; Saleh HAM; Ahmad M
    ACS Omega; 2023 Jan; 8(1):1220-1231. PubMed ID: 36643482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural, Optical, and Arsenic Removal Properties of Sol-Gel Synthesized Fe-Doped TiO
    Gamarra F; Medina J; Lanchipa W; Tamayo R; Sacari E
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation.
    Tulinska J; Mikusova ML; Liskova A; Busova M; Masanova V; Uhnakova I; Rollerova E; Alacova R; Krivosikova Z; Wsolova L; Dusinska M; Horvathova M; Szabova M; Lukan N; Stuchlikova M; Kuba D; Vecera Z; Coufalik P; Krumal K; Alexa L; Vrlikova L; Buchtova M; Dumkova J; Piler P; Thon V; Mikuska P
    Front Immunol; 2022; 13():874253. PubMed ID: 35547729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Sorption of Arsenic on Nanostructured Fe-Cu Binary Oxides: Influence of Structure and Crystallinity.
    Zhang G; Wu Z; Qiu Q; Wang Y
    Front Chem; 2021; 9():840446. PubMed ID: 35127660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-effective synthesis and characterization of CuO NPs as a nanosize adsorbent for As (III) remediation in synthetic arsenic-contaminated water.
    Kumar I; Ranjan P; Quaff AR
    J Environ Health Sci Eng; 2020 Dec; 18(2):1131-1140. PubMed ID: 33312629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III).
    Mashentseva AA; Barsbay M; Zdorovets MV; Zheltov DA; Güven O
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32784726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Copper Oxide Nanoparticles on the Growth of Rice (
    Yang Z; Xiao Y; Jiao T; Zhang Y; Chen J; Gao Y
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32075321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a GNP/Fe-Mg Binary Oxide Composite for Effective Removal of Arsenic from Aqueous Solution.
    La DD; Patwari JM; Jones LA; Antolasic F; Bhosale SV
    ACS Omega; 2017 Jan; 2(1):218-226. PubMed ID: 31457223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic removal by copper-impregnated natural mineral tufa part II: a kinetics and column adsorption study.
    Pantić K; Bajić ZJ; Veličković ZS; Nešić JZ; Đolić MB; Tomić NZ; Marinković AD
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):24143-24161. PubMed ID: 31228066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-Supported Spinel CuFe₂O₄ Composites: Novel Adsorbents for Arsenic Removal in Aqueous Media.
    La DD; Nguyen TA; Jones LA; Bhosale SV
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587257
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Amrani MA; Srikanth VV; Labhsetwar NK; Al-Fatesh AS; Shaikh H
    Sci Technol Adv Mater; 2016; 17(1):760-768. PubMed ID: 27933116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate beads containing water treatment residuals for arsenic removal from water-formation and adsorption studies.
    Ociński D; Jacukowicz-Sobala I; Kociołek-Balawejder E
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24527-24539. PubMed ID: 27164875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability.
    Schilz JR; Reddy KJ; Nair S; Johnson TE; Tjalkens RB; Krueger KP; Clark S
    J Vis Exp; 2015 Jun; (100):e52715. PubMed ID: 26132311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic removal by nanoparticles: a review.
    Habuda-Stanić M; Nujić M
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8094-123. PubMed ID: 25791264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel arsenic removal process for water using cupric oxide nanoparticles.
    Reddy KJ; McDonald KJ; King H
    J Colloid Interface Sci; 2013 May; 397():96-102. PubMed ID: 23452518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles.
    Martinson CA; Reddy KJ
    J Colloid Interface Sci; 2009 Aug; 336(2):406-11. PubMed ID: 19477461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water.
    McDonald KJ; Reynolds B; Reddy KJ
    Sci Rep; 2015 Jun; 5():11110. PubMed ID: 26047164
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.