BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23452824)

  • 1. Endodermal stem cell populations derived from pluripotent stem cells.
    Cheng X; Tiyaboonchai A; Gadue P
    Curr Opin Cell Biol; 2013 Apr; 25(2):265-71. PubMed ID: 23452824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of hepatocyte- and endocrine pancreatic-like cells from human induced endodermal progenitor cells.
    Sambathkumar R; Akkerman R; Dastidar S; Roelandt P; Kumar M; Bajaj M; Mestre Rosa AR; Helsen N; Vanslembrouck V; Kalo E; Khurana S; Laureys J; Gysemans C; Faas MM; de Vos P; Verfaillie CM
    PLoS One; 2018; 13(5):e0197046. PubMed ID: 29750821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of endoderm lineages from pluripotent stem cells.
    Luo X; Wang H; Leighton J; O'Sullivan M; Wang P
    Regen Med; 2017 Jan; 12(1):77-89. PubMed ID: 27976977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture.
    Takeuchi H; Nakatsuji N; Suemori H
    Sci Rep; 2014 Mar; 4():4488. PubMed ID: 24671046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-renewing endodermal progenitor lines generated from human pluripotent stem cells.
    Cheng X; Ying L; Lu L; Galvão AM; Mills JA; Lin HC; Kotton DN; Shen SS; Nostro MC; Choi JK; Weiss MJ; French DL; Gadue P
    Cell Stem Cell; 2012 Apr; 10(4):371-84. PubMed ID: 22482503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells.
    Green MD; Chen A; Nostro MC; d'Souza SL; Schaniel C; Lemischka IR; Gouon-Evans V; Keller G; Snoeck HW
    Nat Biotechnol; 2011 Mar; 29(3):267-72. PubMed ID: 21358635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets.
    Bose B; Sudheer PS
    Methods Mol Biol; 2016; 1341():257-84. PubMed ID: 25783769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced differentiation of human pluripotent stem cells into pancreatic progenitors co-expressing PDX1 and NKX6.1.
    Memon B; Karam M; Al-Khawaga S; Abdelalim EM
    Stem Cell Res Ther; 2018 Jan; 9(1):15. PubMed ID: 29361979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells.
    Hogrebe NJ; Augsornworawat P; Maxwell KG; Velazco-Cruz L; Millman JR
    Nat Biotechnol; 2020 Apr; 38(4):460-470. PubMed ID: 32094658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythropoietin facilitates definitive endodermal differentiation of mouse embryonic stem cells via activation of ERK signaling.
    Kaitsuka T; Kobayashi K; Otsuka W; Kubo T; Hakim F; Wei FY; Shiraki N; Kume S; Tomizawa K
    Am J Physiol Cell Physiol; 2017 May; 312(5):C573-C582. PubMed ID: 28298334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Quick and Efficient Method for the Purification of Endoderm Cells Generated from Human Embryonic Stem Cells.
    Davenport C; Diekmann U; Naujok O
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 26966833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating cells of the gastrointestinal system: current approaches and applications for the differentiation of human pluripotent stem cells.
    Wang A; Sander M
    J Mol Med (Berl); 2012 Jul; 90(7):763-71. PubMed ID: 22714642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derivation of insulin-producing beta-cells from human pluripotent stem cells.
    Schiesser JV; Micallef SJ; Hawes S; Elefanty AG; Stanley EG
    Rev Diabet Stud; 2014; 11(1):6-18. PubMed ID: 25148364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of pancreatic β cells from CD177
    Mahaddalkar PU; Scheibner K; Pfluger S; Ansarullah ; Sterr M; Beckenbauer J; Irmler M; Beckers J; Knöbel S; Lickert H
    Nat Biotechnol; 2020 Sep; 38(9):1061-1072. PubMed ID: 32341565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells.
    Cheng K; Follenzi A; Surana M; Fleischer N; Gupta S
    Stem Cell Res Ther; 2010 Mar; 1(1):6. PubMed ID: 20504287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Pluripotent Stem Cell-Derived Endoderm for Modeling Development and Clinical Applications.
    Yiangou L; Ross ADB; Goh KJ; Vallier L
    Cell Stem Cell; 2018 Apr; 22(4):485-499. PubMed ID: 29625066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing a Cost-Effective and Scalable Production of Human Hepatic Competent Endoderm from Size-Controlled Pluripotent Stem Cell Aggregates.
    Farzaneh Z; Najarasl M; Abbasalizadeh S; Vosough M; Baharvand H
    Stem Cells Dev; 2018 Feb; 27(4):262-274. PubMed ID: 29298619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro differentiation and expansion of human pluripotent stem cell-derived pancreatic progenitors.
    Chmielowiec J; Borowiak M
    Rev Diabet Stud; 2014; 11(1):19-34. PubMed ID: 25148365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Converting human pluripotent stem cells into beta-cells: recent advances and future challenges.
    Mayhew CN; Wells JM
    Curr Opin Organ Transplant; 2010 Feb; 15(1):54-60. PubMed ID: 19855279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activin A and Wnt-dependent specification of human definitive endoderm cells.
    Toivonen S; Lundin K; Balboa D; Ustinov J; Tamminen K; Palgi J; Trokovic R; Tuuri T; Otonkoski T
    Exp Cell Res; 2013 Oct; 319(17):2535-44. PubMed ID: 23954819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.