These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23452838)

  • 1. SQUID-detected ultra-low field MRI.
    Espy M; Matlashov A; Volegov P
    J Magn Reson; 2013 Apr; 229():127-41. PubMed ID: 23452838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SQUID-detected ultra-low field MRI.
    Espy M; Matlashov A; Volegov P
    J Magn Reson; 2013 Mar; 228():1-15. PubMed ID: 23333456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On a ghost artefact in ultra low field magnetic resonance relaxation imaging.
    Volegov P; Schultz L; Espy M
    J Magn Reson; 2014 Jun; 243():98-106. PubMed ID: 24792962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SQUID-sensor-based ultra-low-field MRI calibration with phantom images: towards quantitative imaging.
    Dabek J; Vesanen PT; Zevenhoven KC; Nieminen JO; Sepponen R; Ilmoniemi RJ
    J Magn Reson; 2012 Nov; 224():22-31. PubMed ID: 23000977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic Resonance Relaxometry at Low and Ultra low Fields.
    Volegov P; Flynn M; Kraus R; Magnelind P; Matlashov A; Nath P; Owens T; Sandin H; Savukov I; Schultz L; Urbaitis A; Zotev V; Espy M
    IFMBE Proc; 2010; 28():82-87. PubMed ID: 21796269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with MagnetoEncephaloGraphy Environment.
    Galante A; Sinibaldi R; Conti A; De Luca C; Catallo N; Sebastiani P; Pizzella V; Romani GL; Sotgiu A; Della Penna S
    PLoS One; 2015; 10(12):e0142701. PubMed ID: 26630172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient-excitation encoding combined with frequency and phase encodings for three-dimensional ultra-low-field MRI.
    Dabek J; Zevenhoven KC; Nieminen JO; Vesanen PT; Sepponen R; Ilmoniemi RJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1093-7. PubMed ID: 23366086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization encoding as a novel approach to MRI.
    Nieminen JO; Burghoff M; Trahms L; Ilmoniemi RJ
    J Magn Reson; 2010 Feb; 202(2):211-6. PubMed ID: 20005138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of magnetic field fluctuation on ultra-low field MRI measurements in the unshielded laboratory environment.
    Liu C; Chang B; Qiu L; Dong H; Qiu Y; Zhang Y; Krause HJ; Offenhäusser A; Xie X
    J Magn Reson; 2015 Aug; 257():8-14. PubMed ID: 26037135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avoiding eddy-current problems in ultra-low-field MRI with self-shielded polarizing coils.
    Nieminen JO; Vesanen PT; Zevenhoven KC; Dabek J; Hassel J; Luomahaara J; Penttilä JS; Ilmoniemi RJ
    J Magn Reson; 2011 Sep; 212(1):154-60. PubMed ID: 21784681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An advanced phantom study assessing the feasibility of neuronal current imaging by ultra-low-field NMR.
    Körber R; Nieminen JO; Höfner N; Jazbinšek V; Scheer HJ; Kim K; Burghoff M
    J Magn Reson; 2013 Dec; 237():182-190. PubMed ID: 24252245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of full tensor current density imaging using ultra-low field MRI.
    Hömmen P; Storm JH; Höfner N; Körber R
    Magn Reson Imaging; 2019 Jul; 60():137-144. PubMed ID: 30898636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel MRI at microtesla fields.
    Zotev VS; Volegov PL; Matlashov AN; Espy MA; Mosher JC; Kraus RH
    J Magn Reson; 2008 Jun; 192(2):197-208. PubMed ID: 18328753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SQUID-detected MRI at 132 microT with T1-weighted contrast established at 10 microT--300 mT.
    Lee SK; Mössle M; Myers W; Kelso N; Trabesinger AH; Pines A; Clarke J
    Magn Reson Med; 2005 Jan; 53(1):9-14. PubMed ID: 15690496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-cryogenic anatomical imaging in ultra-low field regime: hand MRI demonstration.
    Savukov I; Karaulanov T; Castro A; Volegov P; Matlashov A; Urbatis A; Gomez J; Espy M
    J Magn Reson; 2011 Aug; 211(2):101-8. PubMed ID: 21700482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of nanotesla AC magnetic fields using steady-state SIRS and ultra-low field MRI.
    Sveinsson B; Koonjoo N; Zhu B; Witzel T; Rosen MS
    J Neural Eng; 2020 Jun; 17(3):034001. PubMed ID: 32268305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotary scanning acquisition in ultra-low-field MRI.
    Hsu YC; Zevenhoven KC; Chu YH; Dabek J; Ilmoniemi RJ; Lin FH
    Magn Reson Med; 2016 Jun; 75(6):2255-64. PubMed ID: 26122196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 microT to 1.5 T.
    Myers W; Slichter D; Hatridge M; Busch S; Mössle M; McDermott R; Trabesinger A; Clarke J
    J Magn Reson; 2007 Jun; 186(2):182-92. PubMed ID: 17337220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-low noise graphene/copper/nylon fabric for electromagnetic interference shielding in ultra-low field magnetic resonance imaging.
    Yu M; Tao Q; Dong H; Huang T; Li Y; Xiao Y; Yang S; Gao B; Ding G; Xie X
    J Magn Reson; 2020 Aug; 317():106775. PubMed ID: 32598279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual benefit achieved by combining ultralow-field magnetic resonance and hyperpolarizing techniques.
    Buckenmaier K; Rudolph M; Fehling P; Steffen T; Back C; Bernard R; Pohmann R; Bernarding J; Kleiner R; Koelle D; Plaumann M; Scheffler K
    Rev Sci Instrum; 2018 Dec; 89(12):125103. PubMed ID: 30599552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.