These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3651 related articles for article (PubMed ID: 23452860)

  • 1. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.
    Qi LS; Larson MH; Gilbert LA; Doudna JA; Weissman JS; Arkin AP; Lim WA
    Cell; 2013 Feb; 152(5):1173-83. PubMed ID: 23452860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR interference (CRISPRi) for sequence-specific control of gene expression.
    Larson MH; Gilbert LA; Wang X; Lim WA; Weissman JS; Qi LS
    Nat Protoc; 2013 Nov; 8(11):2180-96. PubMed ID: 24136345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus.
    Guzzo M; Castro LK; Reisch CR; Guo MS; Laub MT
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cas12a-based CRISPR interference system for multigene regulation in mycobacteria.
    Fleck N; Grundner C
    J Biol Chem; 2021 Aug; 297(2):100990. PubMed ID: 34298016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massively parallel CRISPRi assays reveal concealed thermodynamic determinants of dCas12a binding.
    Specht DA; Xu Y; Lambert G
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11274-11282. PubMed ID: 32376630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.
    Gilbert LA; Larson MH; Morsut L; Liu Z; Brar GA; Torres SE; Stern-Ginossar N; Brandman O; Whitehead EH; Doudna JA; Lim WA; Weissman JS; Qi LS
    Cell; 2013 Jul; 154(2):442-51. PubMed ID: 23849981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli.
    Sung LY; Wu MY; Lin MW; Hsu MN; Truong VA; Shen CC; Tu Y; Hwang KY; Tu AP; Chang YH; Hu YC
    Biotechnol Bioeng; 2019 May; 116(5):1066-1079. PubMed ID: 30636321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a Gene Knockdown System Based on Catalytically Inactive ("Dead") Cas9 (dCas9) in Staphylococcus aureus.
    Zhao C; Shu X; Sun B
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28411216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
    DiCarlo JE; Norville JE; Mali P; Rios X; Aach J; Church GM
    Nucleic Acids Res; 2013 Apr; 41(7):4336-43. PubMed ID: 23460208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems.
    Fonfara I; Le Rhun A; Chylinski K; Makarova KS; LĂ©crivain AL; Bzdrenga J; Koonin EV; Charpentier E
    Nucleic Acids Res; 2014 Feb; 42(4):2577-90. PubMed ID: 24270795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene silencing based on RNA-guided catalytically inactive Cas9 (dCas9): a new tool for genetic engineering in Leptospira.
    Fernandes LGV; Guaman LP; Vasconcellos SA; Heinemann MB; Picardeau M; Nascimento ALTO
    Sci Rep; 2019 Feb; 9(1):1839. PubMed ID: 30755626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi.
    Banta AB; Ward RD; Tran JS; Bacon EE; Peters JM
    Curr Protoc Microbiol; 2020 Dec; 59(1):e130. PubMed ID: 33332762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease.
    Cho SW; Kim S; Kim JM; Kim JS
    Nat Biotechnol; 2013 Mar; 31(3):230-2. PubMed ID: 23360966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens.
    Kim SK; Kim H; Ahn WC; Park KH; Woo EJ; Lee DH; Lee SG
    ACS Synth Biol; 2017 Jul; 6(7):1273-1282. PubMed ID: 28375596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro enzymology of Cas9.
    Anders C; Jinek M
    Methods Enzymol; 2014; 546():1-20. PubMed ID: 25398333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR interference and its applications.
    Ghavami S; Pandi A
    Prog Mol Biol Transl Sci; 2021; 180():123-140. PubMed ID: 33934834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis.
    Mo XH; Zhang H; Wang TM; Zhang C; Zhang C; Xing XH; Yang S
    Appl Microbiol Biotechnol; 2020 May; 104(10):4515-4532. PubMed ID: 32215707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 183.