These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 23453222)

  • 1. Computational mass spectrometry for small molecules.
    Scheubert K; Hufsky F; Böcker S
    J Cheminform; 2013 Mar; 5(1):12. PubMed ID: 23453222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated pipeline for de novo metabolite identification using mass-spectrometry-based metabolomics.
    Peironcely JE; Rojas-Chertó M; Tas A; Vreeken R; Reijmers T; Coulier L; Hankemeier T
    Anal Chem; 2013 Apr; 85(7):3576-83. PubMed ID: 23368721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing fragmentation trees from tandem mass spectrometry data.
    Rasche F; Svatos A; Maddula RK; Böttcher C; Böcker S
    Anal Chem; 2011 Feb; 83(4):1243-51. PubMed ID: 21182243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics.
    Vaniya A; Fiehn O
    Trends Analyt Chem; 2015 Jun; 69():52-61. PubMed ID: 26213431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragmentation trees reloaded.
    Böcker S; Dührkop K
    J Cheminform; 2016; 8():5. PubMed ID: 26839597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolite identification using automated comparison of high-resolution multistage mass spectral trees.
    Rojas-Cherto M; Peironcely JE; Kasper PT; van der Hooft JJ; de Vos RC; Vreeken R; Hankemeier T; Reijmers T
    Anal Chem; 2012 Jul; 84(13):5524-34. PubMed ID: 22612383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational mass spectrometry for metabolomics: identification of metabolites and small molecules.
    Neumann S; Böcker S
    Anal Bioanal Chem; 2010 Dec; 398(7-8):2779-88. PubMed ID: 20936272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the unknowns by aligning fragmentation trees.
    Rasche F; Scheubert K; Hufsky F; Zichner T; Kai M; Svatoš A; Böcker S
    Anal Chem; 2012 Apr; 84(7):3417-26. PubMed ID: 22390817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in structure elucidation of small molecules using mass spectrometry.
    Kind T; Fiehn O
    Bioanal Rev; 2010 Dec; 2(1-4):23-60. PubMed ID: 21289855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De Novo Molecular Formula Annotation and Structure Elucidation Using SIRIUS 4.
    Ludwig M; Fleischauer M; Dührkop K; Hoffmann MA; Böcker S
    Methods Mol Biol; 2020; 2104():185-207. PubMed ID: 31953819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Formula Identification Using Isotope Pattern Analysis and Calculation of Fragmentation Trees.
    Dührkop K; Hufsky F; Böcker S
    Mass Spectrom (Tokyo); 2014; 3(Spec Iss 2):S0037. PubMed ID: 26819880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico fragmentation for computer assisted identification of metabolite mass spectra.
    Wolf S; Schmidt S; Müller-Hannemann M; Neumann S
    BMC Bioinformatics; 2010 Mar; 11():148. PubMed ID: 20307295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using spectral libraries for peptide identification from tandem mass spectrometry (MS/MS) data.
    Lam H; Aebersold R
    Curr Protoc Protein Sci; 2010 Apr; Chapter 25():25.5.1-25.5.9. PubMed ID: 20393975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The critical role that spectral libraries play in capturing the metabolomics community knowledge.
    Bittremieux W; Wang M; Dorrestein PC
    Metabolomics; 2022 Nov; 18(12):94. PubMed ID: 36409434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous screening of targeted and non-targeted contaminants using an LC-QTOF-MS system and automated MS/MS library searching.
    Herrera-Lopez S; Hernando MD; García-Calvo E; Fernández-Alba AR; Ulaszewska MM
    J Mass Spectrom; 2014 Sep; 49(9):878-93. PubMed ID: 25230185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Building and searching tandem mass spectral libraries for peptide identification.
    Lam H
    Mol Cell Proteomics; 2011 Dec; 10(12):R111.008565. PubMed ID: 21900153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds.
    Klagkou K; Pullen F; Harrison M; Organ A; Firth A; Langley GJ
    Rapid Commun Mass Spectrom; 2003; 17(11):1163-8. PubMed ID: 12772272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semi-empirical approach for predicting unobserved peptide MS/MS spectra from spectral libraries.
    Hu Y; Li Y; Lam H
    Proteomics; 2011 Dec; 11(24):4702-11. PubMed ID: 22038894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of protocols for reproducible electrospray in-source collisionally induced dissociation on various liquid chromatography/mass spectrometry instruments and the development of spectral libraries.
    Bristow AW; Nichols WF; Webb KS; Conway B
    Rapid Commun Mass Spectrom; 2002; 16(24):2374-86. PubMed ID: 12478584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spectral networks paradigm in high throughput mass spectrometry.
    Guthals A; Watrous JD; Dorrestein PC; Bandeira N
    Mol Biosyst; 2012 Oct; 8(10):2535-44. PubMed ID: 22610447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.