These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23453295)

  • 1. Endogenous brain-machine interface based on the correlation of EEG maps.
    Ubeda A; Iáñez E; Azorín JM; Perez-Vidal C
    Comput Methods Programs Biomed; 2013 Nov; 112(2):302-8. PubMed ID: 23453295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term evaluation of a 4-class imagery-based brain-computer interface.
    Friedrich EV; Scherer R; Neuper C
    Clin Neurophysiol; 2013 May; 124(5):916-27. PubMed ID: 23290926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A supplementary system for a brain-machine interface based on jaw artifacts for the bidimensional control of a robotic arm.
    Costa Á; Hortal E; Iáñez E; Azorín JM
    PLoS One; 2014; 9(11):e112352. PubMed ID: 25390372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combination strategy based brain-computer interface for two-dimensional movement control.
    Xia B; Maysam O; Veser S; Cao L; Li J; Jia J; Xie H; Birbaumer N
    J Neural Eng; 2015 Aug; 12(4):046021. PubMed ID: 26083480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O; Marinelli M; Citi L; Rossini PM; Rossini L; Megali G; Dario P
    J Neurosci Methods; 2008 Jan; 167(1):91-104. PubMed ID: 17499364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training.
    Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lingual electrotactile stimulation as an alternative sensory feedback pathway for brain-computer interface applications.
    Wilson JA; Walton LM; Tyler M; Williams J
    J Neural Eng; 2012 Aug; 9(4):045007. PubMed ID: 22832032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of a 2 DoF robot using a brain-machine interface.
    Hortal E; Ubeda A; Iáñez E; Azorín JM
    Comput Methods Programs Biomed; 2014 Sep; 116(2):169-76. PubMed ID: 24694722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust classification of motor imagery EEG signals using statistical time-domain features.
    Khorshidtalab A; Salami MJ; Hamedi M
    Physiol Meas; 2013 Nov; 34(11):1563-79. PubMed ID: 24152422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward unsupervised adaptation of LDA for brain-computer interfaces.
    Vidaurre C; Kawanabe M; von Bünau P; Blankertz B; Müller KR
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):587-97. PubMed ID: 21095857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of a humanoid robot by a noninvasive brain-computer interface in humans.
    Bell CJ; Shenoy P; Chalodhorn R; Rao RP
    J Neural Eng; 2008 Jun; 5(2):214-20. PubMed ID: 18483450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network.
    Hazrati MKh; Erfanian A
    Med Eng Phys; 2010 Sep; 32(7):730-9. PubMed ID: 20510641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embedded prediction in feature extraction: application to single-trial EEG discrimination.
    Hsu WY
    Clin EEG Neurosci; 2013 Jan; 44(1):31-8. PubMed ID: 23248335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.