These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23453355)

  • 1. Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction.
    Biganzoli L; Ilyas A; Praagh Mv; Persson KM; Grosso M
    Waste Manag; 2013 May; 33(5):1174-81. PubMed ID: 23453355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminium recovery from waste incineration bottom ash, and its oxidation level.
    Biganzoli L; Grosso M
    Waste Manag Res; 2013 Sep; 31(9):954-9. PubMed ID: 23831779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces.
    Biganzoli L; Gorla L; Nessi S; Grosso M
    Waste Manag; 2012 Dec; 32(12):2266-72. PubMed ID: 22749723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives.
    Zhen G; Lu X; Zhao Y; Niu J; Chai X; Su L; Li YY; Liu Y; Du J; Hojo T; Hu Y
    J Environ Manage; 2013 Nov; 129():183-9. PubMed ID: 23933484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash.
    Nithiya A; Saffarzadeh A; Shimaoka T
    Waste Manag; 2018 Mar; 73():342-350. PubMed ID: 28666630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensor-based control in eddy current separation of incinerator bottom ash.
    Rahman MA; Bakker MC
    Waste Manag; 2013 Jun; 33(6):1418-24. PubMed ID: 23490354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash.
    Gökelma M; Vallejo-Olivares A; Tranell G
    Waste Manag; 2021 Jul; 130():65-73. PubMed ID: 34051605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery and distribution of incinerated aluminum packaging waste.
    Hu Y; Bakker MC; de Heij PG
    Waste Manag; 2011 Dec; 31(12):2422-30. PubMed ID: 21862306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aluminium alloys in municipal solid waste incineration bottom ash.
    Hu Y; Rem P
    Waste Manag Res; 2009 May; 27(3):251-7. PubMed ID: 19423581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete determination of the material composition of municipal solid waste incineration bottom ash.
    Huber F; Blasenbauer D; Aschenbrenner P; Fellner J
    Waste Manag; 2020 Feb; 102():677-685. PubMed ID: 31790926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus recovery from municipal solid waste incineration fly ash.
    Kalmykova Y; Fedje KK
    Waste Manag; 2013 Jun; 33(6):1403-10. PubMed ID: 23490361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust.
    Bourtsalas A; Vandeperre L; Grimes S; Themelis N; Koralewska R; Cheeseman C
    Waste Manag Res; 2015 Sep; 33(9):794-804. PubMed ID: 26060195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic aluminum in MSWI fly ash: quantification and influence on the properties of cement-based products.
    Aubert JE; Husson B; Vaquier A
    Waste Manag; 2004; 24(6):589-96. PubMed ID: 15219917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkali activation processes for incinerator residues management.
    Lancellotti I; Ponzoni C; Barbieri L; Leonelli C
    Waste Manag; 2013 Aug; 33(8):1740-9. PubMed ID: 23756039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste.
    Okada T; Tomikawa H
    Waste Manag; 2013 Mar; 33(3):605-14. PubMed ID: 22981781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation.
    Cornelis G; Van Gerven T; Vandecasteele C
    Waste Manag; 2012 Feb; 32(2):278-86. PubMed ID: 22035902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal treatment of MSWI bottom ash forming acid-resistant material.
    Etoh J; Kawagoe T; Shimaoka T; Watanabe K
    Waste Manag; 2009 Mar; 29(3):1048-57. PubMed ID: 18845427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Belgian MSWI fly ashes and APC residues: a characterisation study.
    De Boom A; Degrez M
    Waste Manag; 2012 Jun; 32(6):1163-70. PubMed ID: 22244614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of pyroxene ceramics from the fine fraction of incinerator bottom ash.
    Bourtsalas A; Vandeperre LJ; Grimes SM; Themelis N; Cheeseman CR
    Waste Manag; 2015 Nov; 45():217-25. PubMed ID: 25743204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.