BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 23453463)

  • 41. Continuous Affinity Purification of Adeno-Associated Virus Using Periodic Counter-Current Chromatography.
    Mendes JP; Bergman M; Solbrand A; Peixoto C; Carrondo MJT; Silva RJS
    Pharmaceutics; 2022 Jun; 14(7):. PubMed ID: 35890242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Real-time monitoring and control of the load phase of a protein A capture step.
    Rüdt M; Brestrich N; Rolinger L; Hubbuch J
    Biotechnol Bioeng; 2017 Feb; 114(2):368-373. PubMed ID: 27543789
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new, integrated, continuous purification process template for monoclonal antibodies: Process modeling and cost of goods studies.
    Xenopoulos A
    J Biotechnol; 2015 Nov; 213():42-53. PubMed ID: 25959171
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design and operation of a continuous integrated monoclonal antibody production process.
    Steinebach F; Ulmer N; Wolf M; Decker L; Schneider V; Wälchli R; Karst D; Souquet J; Morbidelli M
    Biotechnol Prog; 2017 Sep; 33(5):1303-1313. PubMed ID: 28691347
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification of monomeric mAb from associated aggregates using selective desorption chromatography in hydroxyapatite systems.
    Morrison CJ; Gagnon P; Cramer SM
    Biotechnol Bioeng; 2011 Apr; 108(4):813-21. PubMed ID: 20967751
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Continuous bind-and-elute protein A capture chromatography: Optimization under process scale column constraints and comparison to batch operation.
    Kaltenbrunner O; Diaz L; Hu X; Shearer M
    Biotechnol Prog; 2016 Jul; 32(4):938-48. PubMed ID: 27111828
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clearance of the rodent retrovirus, XMuLV, by protein A chromatography.
    Bach J; Connell-Crowley L
    Biotechnol Bioeng; 2015 Apr; 112(4):743-50. PubMed ID: 25335906
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Continuous processing and the applications of online tools in pharmaceutical product manufacture: developments and examples.
    Ooi SM; Sarkar S; van Varenbergh G; Schoeters K; Heng PW
    Ther Deliv; 2013 Apr; 4(4):463-70. PubMed ID: 23557287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Data mining for rapid prediction of facility fit and debottlenecking of biomanufacturing facilities.
    Yang Y; Farid SS; Thornhill NF
    J Biotechnol; 2014 Jun; 179():17-25. PubMed ID: 24637375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Model-based process development of continuous chromatography for antibody capture: A case study with twin-column system.
    Shi C; Gao ZY; Zhang QL; Yao SJ; Slater NKH; Lin DQ
    J Chromatogr A; 2020 May; 1619():460936. PubMed ID: 32037074
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exploring features in chromatographic profiles as a tool for monitoring column performance.
    Ravi N; Malmquist G; Stanev V; Ferreira G
    J Chromatogr A; 2023 Jun; 1698():463982. PubMed ID: 37087858
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Continuous refolding of L-asparaginase inclusion bodies using periodic counter-current chromatography.
    Rajendran V; Pushpavanam S; Jayaraman G
    J Chromatogr A; 2022 Jan; 1662():462746. PubMed ID: 34936904
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Designing cost-effective biopharmaceutical facilities using mixed-integer optimization.
    Liu S; Simaria AS; Farid SS; Papageorgiou LG
    Biotechnol Prog; 2013; 29(6):1472-83. PubMed ID: 23956206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Model-assisted process characterization and validation for a continuous two-column protein A capture process.
    Baur D; Angelo J; Chollangi S; Müller-Späth T; Xu X; Ghose S; Li ZJ; Morbidelli M
    Biotechnol Bioeng; 2019 Jan; 116(1):87-98. PubMed ID: 30298905
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production.
    Dizon-Maspat J; Bourret J; D'Agostini A; Li F
    Biotechnol Bioeng; 2012 Apr; 109(4):962-70. PubMed ID: 22094920
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of Protein A affinity resins for twin-column continuous capture processes: Process performance and resin characteristics.
    Sun YN; Shi C; Zhang QL; Slater NKH; Jungbauer A; Yao SJ; Lin DQ
    J Chromatogr A; 2021 Sep; 1654():462454. PubMed ID: 34407469
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrated continuous biomanufacturing platform with ATF perfusion and one column chromatography operation for optimum resin utilization and productivity.
    Kamga MH; Cattaneo M; Yoon S
    Prep Biochem Biotechnol; 2018 May; 48(5):383-390. PubMed ID: 29509101
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering protein A affinity chromatography.
    Jungbauer A; Hahn R
    Curr Opin Drug Discov Devel; 2004 Mar; 7(2):248-56. PubMed ID: 15603260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance of a new protein A affinity membrane for the primary recovery of antibodies.
    Boi C; Dimartino S; Sarti GC
    Biotechnol Prog; 2008; 24(3):640-7. PubMed ID: 18473438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Viral clearance capacity by continuous Protein A chromatography step using Sequential MultiColumn Chromatography.
    Goussen C; Goldstein L; Brèque C; You B; Boyer S; Bataille D; Burlot L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 May; 1145():122056. PubMed ID: 32315973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.