These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2345382)

  • 1. A new total heart design via implantable impeller pumps.
    Qian KX
    J Biomater Appl; 1990 Apr; 4(4):405-18. PubMed ID: 2345382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsatile impeller heart: a viable alternative to a problematic diaphragm heart.
    Qian KX
    Med Eng Phys; 1996 Jan; 18(1):57-66. PubMed ID: 8771040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haemodynamic approach to reducing thrombosis and haemolysis in an impeller pump.
    Qian KX
    J Biomed Eng; 1990 Nov; 12(6):533-5. PubMed ID: 2266752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsatile blood flow from impeller pump: a dream has come true.
    Qian KX
    J Biomater Appl; 1994 Oct; 9(2):158-77. PubMed ID: 7782998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The realization of a pulsatile implantable impeller pump with low hemolysis.
    Qian KX; Fei Q; Lin KD; Pi KD; Wang YP
    Artif Organs; 1989 Apr; 13(2):162-9. PubMed ID: 2705888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid dynamic characteristics of monopivot magnetic suspension blood pumps.
    Yamane T; Nishida M; Asztalos B; Tsutsui T; Jikuya T
    ASAIO J; 1997; 43(5):M635-8. PubMed ID: 9360122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experience in reducing the hemolysis of an impeller assist heart.
    Qian KX
    ASAIO Trans; 1989; 35(1):46-53. PubMed ID: 2730808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New investigations of a pulsatile impeller blood pump.
    Qian KX
    ASAIO Trans; 1990; 36(1):33-5. PubMed ID: 2306388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gap velocity measurements of a blood pump model.
    Chua LP; Ong KS; Yu CM; Chan WK; Wong YW
    Artif Organs; 2002 Aug; 26(8):682-94. PubMed ID: 12139495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streamlined design of impeller and its effect on pump haemolysis.
    Qian KX; Zeng P; Ru WM; Yuan HY
    J Med Eng Technol; 2002; 26(2):79-81. PubMed ID: 12102327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.
    Su B; Chua LP; Lim TM; Zhou T
    Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of impeller vane number and angles on pump hemolysis].
    Qian K; Feng Z; Zeng P; Ru W; Yuan H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):605-7. PubMed ID: 14716856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel permanent maglev impeller TAH: most requirements on blood pumps have been satisfied.
    Qian KX; Zeng P; Ru WM; Yuan HY
    J Biomater Appl; 2003 Jul; 18(1):53-61. PubMed ID: 12873075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump.
    Qian KX; Wang FQ; Zeng P; Ru WM; Yuan HY; Feng ZG
    J Med Eng Technol; 2006; 30(6):353-7. PubMed ID: 17060163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Centrifugal blood pumps (new possibilities of design improvement)].
    LeshchinskiÄ­ BM; Itkin GP; Zimin NK
    Med Tekh; 1992; (2):18-21. PubMed ID: 1513234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A magnetically suspended centrifugal pump. In vitro and in vivo assessment.
    Park CH; Nishimura K; Yamada T; Mizuhara H; Akamatsu T; Tsukiya T; Matsuda K; Ban T
    ASAIO J; 1995; 41(3):M345-50. PubMed ID: 8573822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of floating impeller phenomena in a Gyro centrifugal pump.
    Nishimura I; Ichikawa S; Mikami M; Ishitoya H; Motomura T; Kawamura M; Linneweber J; Glueck J; Shinohara T; Nosé Y
    Biomed Mater Eng; 2013; 23(1-2):49-55. PubMed ID: 23442236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow visualization analysis for evaluation of shear and recirculation in a new closed-type, monopivot centrifugal blood pump.
    Asztalos B; Yamane T; Nishida M
    Artif Organs; 1999 Oct; 23(10):939-46. PubMed ID: 10564293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of secondary flow in centrifugal blood pumps using a flow visualization method with a high-speed video camera.
    Sakuma I; Fukui Y; Dohi T
    Artif Organs; 1996 Jun; 20(6):541-5. PubMed ID: 8817952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.