These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23454051)

  • 21. Taking Subvisible Particle Quantitation to the Limit: Uncertainties and Statistical Challenges With Ophthalmic Products for Intravitreal Injection.
    Gühlke M; Hecht J; Böhrer A; Hawe A; Nikels F; Garidel P; Menzen T
    J Pharm Sci; 2020 Jan; 109(1):505-514. PubMed ID: 31682829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of the tyndall effect for enhanced visual detection of particles in compatibility testing of intravenous fluids: validity and reliability.
    Staven V; Waaseth M; Wang S; Grønlie I; Tho I
    PDA J Pharm Sci Technol; 2015; 69(2):270-83. PubMed ID: 25868993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of a simple method for visual detection of microprecipitates in blends of parenteral drug solutions using a focused (tyndall) light beam.
    Veggeland T; Brandl M
    Int J Pharm Compd; 2010; 14(1):78-81. PubMed ID: 23965374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semi-Quantitative Analysis of Inherent Visible Particles for Biopharmaceutical Products.
    Cash PW; Narwal R; Levitskaya SV; Krause S; Murphy D; Mazaheri M
    PDA J Pharm Sci Technol; 2016; 70(2):134-42. PubMed ID: 26797974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glass vials for small volume parenterals: influence of drug and manufacturing processes on glass delamination.
    Ennis RD; Pritchard R; Nakamura C; Coulon M; Yang T; Visor GC; Lee WA
    Pharm Dev Technol; 2001 Aug; 6(3):393-405. PubMed ID: 11485181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of methods for detection of particulate matter in large-volume perenterals.
    Blanchard J; Thompson CM; Schwartz JA
    Am J Hosp Pharm; 1976 Feb; 33(2):144-50. PubMed ID: 1258874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Practical Considerations for Detection and Characterization of Sub-Micron Particles in Protein Solutions by Nanoparticle Tracking Analysis.
    Gruia F; Parupudi A; Polozova A
    PDA J Pharm Sci Technol; 2015; 69(3):427-39. PubMed ID: 26048748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a lyophilized plasmid/LPEI polyplex formulation with long-term stability--A step closer from promising technology to application.
    Kasper JC; Schaffert D; Ogris M; Wagner E; Friess W
    J Control Release; 2011 May; 151(3):246-55. PubMed ID: 21223985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Particulate matter determination in LVPs produced in Dutch hospital pharmacies, Part 1: Particle-counting accuracy.
    Van der Veen J; Verbrugge P; Van de Vaart FJ; Boom FA
    PDA J Pharm Sci Technol; 1997; 51(2):81-8. PubMed ID: 9146039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Particulate-matter content of 11 cephalosporin injections: conformance with USP limits.
    Parkins DA; Taylor AJ
    Am J Hosp Pharm; 1987 May; 44(5):1111-8. PubMed ID: 3605122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of protein sub-visible particles during vacuum degassing of etanercept solutions.
    Wang H; Zheng HJ; Wang Z; Bai H; Carpenter JF; Chen S; Fang WJ
    Int J Biol Macromol; 2014 May; 66():151-7. PubMed ID: 24513220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Particulate matter in small volume parenterals: evaluation of some technological and analytical aspects.
    Cirannni Signoretti E; Montanari I; Neri G; De Sena C; Alimonti S
    Boll Chim Farm; 1989 Feb; 128(2):65-70. PubMed ID: 2775519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Particles in small volume injections.
    Taylor SA; Spence J
    J Pharm Pharmacol; 1983 Dec; 35(12):769-73. PubMed ID: 6141237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Approaches to reducing subvisible particle counts in lyophilized parenteral formulations.
    Gupta PK; Porembski E; Williams NA
    J Pharm Sci Technol; 1994; 48(1):30-7. PubMed ID: 8004415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of Particulate Matter in Liquid-Finished Dosage Forms.
    Duchek J; Havasi B
    PDA J Pharm Sci Technol; 2018; 72(6):608-625. PubMed ID: 29853612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiwavelength transmission spectroscopy revisited for the characterization of the protein and polystyrene nanoparticle interactions.
    Serebrennikova YM; Roth A; Huffman DE; Smith JM; Lindon JN; Garcia-Rubio LH
    Appl Spectrosc; 2013 Jan; 67(1):86-92. PubMed ID: 23317675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.
    Ghazvini S; Kalonia C; Volkin DB; Dhar P
    J Pharm Sci; 2016 May; 105(5):1643-1656. PubMed ID: 27025981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Filtration of Glass Delamination Particles with West Pharmaceutical Vial Adapters.
    Zarour-Shalev EH; Ovadia Y; Tuchmay O; Reynolds G; Lev N
    PDA J Pharm Sci Technol; 2015; 69(6):669-76. PubMed ID: 26659100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Protein Particles in Therapeutic Formulations Using Imaging Flow Cytometry.
    Probst C; Zeng Y; Zhu RR
    J Pharm Sci; 2017 Aug; 106(8):1952-1960. PubMed ID: 28456724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conformational analysis of protein secondary structure during spray-drying of antibody/mannitol formulations.
    Schüle S; Friess W; Bechtold-Peters K; Garidel P
    Eur J Pharm Biopharm; 2007 Jan; 65(1):1-9. PubMed ID: 17034996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.