These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23454053)

  • 1. Tuning peptide affinity for biofunctionalized surfaces.
    Hassert R; Beck-Sickinger AG
    Eur J Pharm Biopharm; 2013 Sep; 85(1):69-77. PubMed ID: 23454053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular biomimetics: GEPI-based biological routes to technology.
    Tamerler C; Khatayevich D; Gungormus M; Kacar T; Oren EE; Hnilova M; Sarikaya M
    Biopolymers; 2010; 94(1):78-94. PubMed ID: 20091881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic hemocompatible coatings through immobilization of hyaluronan derivatives on metal surfaces.
    Thierry B; Winnik FM; Merhi Y; Griesser HJ; Tabrizian M
    Langmuir; 2008 Oct; 24(20):11834-41. PubMed ID: 18759386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promotion of osteogenic cell response using quasicovalent immobilized fibronectin on titanium surfaces: introduction of a novel biomimetic layer system.
    Gorbahn M; Klein MO; Lehnert M; Ziebart T; Brüllmann D; Köper I; Wagner W; Al-Nawas B; Veith M
    J Oral Maxillofac Surg; 2012 Aug; 70(8):1827-34. PubMed ID: 22793955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide interactions with metal and oxide surfaces.
    Vallee A; Humblot V; Pradier CM
    Acc Chem Res; 2010 Oct; 43(10):1297-306. PubMed ID: 20672797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the blood compatibility of material surfaces via biomolecule-immobilized mussel-inspired coatings.
    Wei Q; Li B; Yi N; Su B; Yin Z; Zhang F; Li J; Zhao C
    J Biomed Mater Res A; 2011 Jan; 96(1):38-45. PubMed ID: 20949483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the peptide adsorption on ZrO2, TiZr, and TiO2 surfaces as a method for surface modification.
    Micksch T; Liebelt N; Scharnweber D; Schwenzer B
    ACS Appl Mater Interfaces; 2014 May; 6(10):7408-16. PubMed ID: 24735333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces.
    Costa F; Carvalho IF; Montelaro RC; Gomes P; Martins MC
    Acta Biomater; 2011 Apr; 7(4):1431-40. PubMed ID: 21056701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofunctionalization of materials for implants using engineered peptides.
    Khatayevich D; Gungormus M; Yazici H; So C; Cetinel S; Ma H; Jen A; Tamerler C; Sarikaya M
    Acta Biomater; 2010 Dec; 6(12):4634-41. PubMed ID: 20601249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies For Immobilization Of Bioactive Organic Molecules On Titanium Implant Surfaces - A Review.
    Panayotov IV; Vladimirov BS; Dutilleul PY; Levallois B; Cuisinier F
    Folia Med (Plovdiv); 2015; 57(1):11-8. PubMed ID: 26431090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular simulation to characterize the adsorption behavior of a fibrinogen gamma-chain fragment.
    Agashe M; Raut V; Stuart SJ; Latour RA
    Langmuir; 2005 Feb; 21(3):1103-17. PubMed ID: 15667197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces.
    Martin LJ; Akhavan B; Bilek MMM
    Nat Commun; 2018 Jan; 9(1):357. PubMed ID: 29367659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cells, growth factors and bioactive surface properties in a mechanobiological model of implant healing.
    Guérin G; Ambard D; Swider P
    J Biomech; 2009 Nov; 42(15):2555-61. PubMed ID: 19665713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.
    Meyers SR; Khoo X; Huang X; Walsh EB; Grinstaff MW; Kenan DJ
    Biomaterials; 2009 Jan; 30(3):277-86. PubMed ID: 18929406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface immobilization and bioactivity of TGF-β1 inhibitor peptides for bone implant applications.
    Sevilla P; Vining KV; Dotor J; Rodriguez D; Gil FJ; Aparicio C
    J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):385-94. PubMed ID: 25826572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implant surfaces and interface processes.
    Kasemo B; Gold J
    Adv Dent Res; 1999 Jun; 13():8-20. PubMed ID: 11276751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of endothelial cell phenotype by biomimetic matrix coated on biomaterials for cardiovascular tissue engineering.
    Prasad CK; Krishnan LK
    Acta Biomater; 2008 Jan; 4(1):182-91. PubMed ID: 17643359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization strategy for optimizing VEGF's concurrent bioactivity towards endothelial cells and osteoblasts on implant surfaces.
    Hu X; Neoh KG; Zhang J; Kang ET; Wang W
    Biomaterials; 2012 Nov; 33(32):8082-93. PubMed ID: 22884814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale engineering of low-fouling surfaces through polydopamine immobilisation of zwitterionic peptides.
    Cui J; Ju Y; Liang K; Ejima H; Lörcher S; Gause KT; Richardson JJ; Caruso F
    Soft Matter; 2014 Apr; 10(15):2656-63. PubMed ID: 24647351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofunctionalization of titanium implants with a biomimetic active peptide (P-15) promotes early osseointegration.
    Lutz R; Srour S; Nonhoff J; Weisel T; Damien CJ; Schlegel KA
    Clin Oral Implants Res; 2010 Jul; 21(7):726-34. PubMed ID: 20636727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.