BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23454094)

  • 1. Complexity of roles and regulation of the PMK1-MAPK pathway in mycelium development, conidiation and appressorium formation in Magnaporthe oryzae.
    Jin Q; Li C; Li Y; Shang J; Li D; Chen B; Dong H
    Gene Expr Patterns; 2013; 13(5-6):133-41. PubMed ID: 23454094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thioredoxins are involved in the activation of the PMK1 MAP kinase pathway during appressorium penetration and invasive growth in Magnaporthe oryzae.
    Zhang S; Jiang C; Zhang Q; Qi L; Li C; Xu JR
    Environ Microbiol; 2016 Nov; 18(11):3768-3784. PubMed ID: 27059015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae.
    Zhou X; Zhao X; Xue C; Dai Y; Xu JR
    Mol Plant Microbe Interact; 2014 Sep; 27(9):996-1004. PubMed ID: 24835254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly conserved MAPK-docking site in Mst7 is essential for Pmk1 activation in Magnaporthe grisea.
    Zhao X; Xu JR
    Mol Microbiol; 2007 Feb; 63(3):881-94. PubMed ID: 17214742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Paxillin MoPax1 Activates Mitogen-Activated Protein (MAP) Kinase Signaling Pathways and Autophagy through MAP Kinase Activator MoMka1 during Appressorium-Mediated Plant Infection by the Rice Blast Fungus Magnaporthe oryzae.
    Lv W; Xiao Y; Xu Z; Jiang H; Tong Q; Wang Z
    mBio; 2022 Dec; 13(6):e0221822. PubMed ID: 36314807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea.
    Zhao X; Kim Y; Park G; Xu JR
    Plant Cell; 2005 Apr; 17(4):1317-29. PubMed ID: 15749760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of Mst11 and Feedback Inhibition of Germ Tube Growth in Magnaporthe oryzae.
    Qi L; Kim Y; Jiang C; Li Y; Peng Y; Xu JR
    Mol Plant Microbe Interact; 2015 Aug; 28(8):881-91. PubMed ID: 26057388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MoRad6-mediated ubiquitination pathways are essential for development and pathogenicity in Magnaporthe oryzae.
    Shi HB; Chen GQ; Chen YP; Dong B; Lu JP; Liu XH; Lin FC
    Environ Microbiol; 2016 Nov; 18(11):4170-4187. PubMed ID: 27581713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MST50 is involved in multiple MAP kinase signaling pathways in Magnaporthe oryzae.
    Li G; Zhang X; Tian H; Choi YE; Tao WA; Xu JR
    Environ Microbiol; 2017 May; 19(5):1959-1974. PubMed ID: 28244240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae.
    Li Y; Zhang X; Hu S; Liu H; Xu JR
    PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PAF104, a synthetic peptide to control rice blast disease by blocking appressorium formation in Magnaporthe oryzae.
    Rebollar A; López-García B
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1407-16. PubMed ID: 23902261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus.
    Xue C; Park G; Choi W; Zheng L; Dean RA; Xu JR
    Plant Cell; 2002 Sep; 14(9):2107-19. PubMed ID: 12215509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae.
    Cao H; Huang P; Zhang L; Shi Y; Sun D; Yan Y; Liu X; Dong B; Chen G; Snyder JH; Lin F; Lu J
    New Phytol; 2016 Aug; 211(3):1035-51. PubMed ID: 27041000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae.
    Soanes DM; Chakrabarti A; Paszkiewicz KH; Dawe AL; Talbot NJ
    PLoS Pathog; 2012 Feb; 8(2):e1002514. PubMed ID: 22346750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Pmk1-interacting gene is involved in appressorium differentiation and plant infection in Magnaporthe oryzae.
    Zhang H; Xue C; Kong L; Li G; Xu JR
    Eukaryot Cell; 2011 Aug; 10(8):1062-70. PubMed ID: 21642506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae.
    Li Y; Que Y; Liu Y; Yue X; Meng X; Zhang Z; Wang Z
    Curr Genet; 2015 Nov; 61(4):641-51. PubMed ID: 25944571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea.
    Park G; Xue C; Zhao X; Kim Y; Orbach M; Xu JR
    Plant Cell; 2006 Oct; 18(10):2822-35. PubMed ID: 17056708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea.
    Soanes DM; Kershaw MJ; Cooley RN; Talbot NJ
    Mol Plant Microbe Interact; 2002 Dec; 15(12):1253-67. PubMed ID: 12481998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption and molecular characterization of calpains-related (MoCAPN1, MoCAPN3 and MoCAPN4) genes in Magnaporthe oryzae.
    Khan IA; Wang Y; Li HJ; Lu JP; Liu XH; Lin FC
    Microbiol Res; 2014 Nov; 169(11):844-54. PubMed ID: 24813949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.