BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2345422)

  • 1. Red cell trapping after ischemia and long-term kidney damage. Influence of hematocrit.
    Hellberg PO; Bayati A; Källskog O; Wolgast M
    Kidney Int; 1990 May; 37(5):1240-7. PubMed ID: 2345422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nephron function in the early phase of ischemic renal failure. Significance of erythrocyte trapping.
    Hellberg PO; Källskog O; Wolgast M
    Kidney Int; 1990 Sep; 38(3):432-9. PubMed ID: 2232485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red cell trapping and postischemic renal blood flow. Differences between the cortex, outer and inner medulla.
    Olof P; Hellberg A; Källskog O; Wolgast M
    Kidney Int; 1991 Oct; 40(4):625-31. PubMed ID: 1745011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cold ischemia and reperfusion on trapping of erythrocytes in the rat kidney.
    Jacobsson J; Odlind B; Tufveson G; Wahlberg J
    Transpl Int; 1988 Jul; 1(2):75-9. PubMed ID: 3076384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of type of preservation solution and hemodilution of the recipient on postischemic erythrocyte trapping in kidney grafts. An experimental study in the rat.
    Jacobsson J; Tufveson G; Odlind B; Wahlberg J
    Transplantation; 1989 May; 47(5):876-9. PubMed ID: 2655226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red-cell trapping in the rat renal microcirculation induced by low-osmolar contrast media and mannitol.
    Nygren A; Hellberg O; Hansell P
    Invest Radiol; 1993 Nov; 28(11):1033-8. PubMed ID: 8276574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic diuretics and hemodilution in postischemic renal failure.
    Wolgast M; Bayati A; Hellberg O; Källskog O; Nygren K
    Ren Fail; 1992; 14(3):297-302. PubMed ID: 1509160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiology of Red Blood Cell Trapping in Ischemic Acute Kidney Injury.
    McLarnon SR
    Compr Physiol; 2023 Dec; 14(1):5325-5343. PubMed ID: 38158367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hemodilution and hemoconcentration on red cell flow velocity in the capillaries of the rat mesentery.
    Driessen GK; Heidtmann H; Schmid-Schönbein H
    Pflugers Arch; 1979 May; 380(1):1-6. PubMed ID: 572033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypervolemic-hemodilution during cerebral ischemia in rats: effect of diaspirin cross-linked hemoglobin (DCLHb) on neurologic outcome and infarct volume.
    Cole DJ; Drummond JC; Patel PM; Reynolds LR
    J Neurosurg Anesthesiol; 1997 Jan; 9(1):44-50. PubMed ID: 9016440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute normovolemic hemodilution can aggravate neurological injury after spinal cord ischemia in rats.
    Kim J; Hwang J; Huh J; Nahm SF; Lim C; Park S; Hahn S
    Anesth Analg; 2012 Jun; 114(6):1285-91. PubMed ID: 22451597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hemodilution on RBC velocity, supply rate, and hematocrit in the cerebral capillary network.
    Hudetz AG; Wood JD; Biswal BB; Krolo I; Kampine JP
    J Appl Physiol (1985); 1999 Aug; 87(2):505-9. PubMed ID: 10444605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of erythrocyte trapping in ischaemic acute renal failure.
    Bayati A; Christofferson R; Källskog O; Wolgast M
    Acta Physiol Scand; 1990 Jan; 138(1):13-23. PubMed ID: 2309565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extravasation of Blood and Blood Toxicity Drives Tubular Injury from RBC Trapping in Ischemic AKI.
    McLarnon SR; Johnson C; Sun J; Wei Q; Csanyi G; O'Herron P; Marshall B; Giddens P; Sullivan JC; Barrett A; O'Connor PM
    Function (Oxf); 2023; 4(6):zqad050. PubMed ID: 37753180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-ischaemic administration of hyperosmolar mannitol enhances erythrocyte trapping in outer medullary vasculature in the rat kidney.
    Hellberg O; Nygren A; Hansell P; Fasching A
    Ren Physiol Biochem; 1990; 13(6):328-32. PubMed ID: 1701916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hematocrit changes in the extra- and intraparenchymal circulation of the feline brain cortex in the course of global cerebral ischemia.
    Eke A
    Adv Exp Med Biol; 1989; 248():439-49. PubMed ID: 2782165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of casual relationship between medullary blood congestion and tubular necrosis in postischaemic kidney damage.
    Andersson G; Jennische E
    Acta Physiol Scand; 1987 Jul; 130(3):429-32. PubMed ID: 3630721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral blood flow, blood volume, and brain tissue hematocrit during isovolemic hemodilution with hetastarch in rats.
    Todd MM; Weeks JB; Warner DS
    Am J Physiol; 1992 Jul; 263(1 Pt 2):H75-82. PubMed ID: 1379006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvascular hemodynamics during systemic hemodilution and hemoconcentration.
    Lipowsky HH; Firrell JC
    Am J Physiol; 1986 Jun; 250(6 Pt 2):H908-22. PubMed ID: 3717365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The top tertile of hematocrit change during hospitalization is associated with lower risk of mortality in acute heart failure patients.
    Zhou H; Xu T; Huang Y; Zhan Q; Huang X; Zeng Q; Xu D
    BMC Cardiovasc Disord; 2017 Sep; 17(1):235. PubMed ID: 28865437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.