BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23454280)

  • 1. Structural, enzymatic and biochemical studies on Helicobacter pylori arginase.
    Zhang X; Zhang J; Zhang R; Guo Y; Wu C; Mao X; Guo G; Zhang Y; Li D; Zou Q
    Int J Biochem Cell Biol; 2013 May; 45(5):995-1002. PubMed ID: 23454280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily.
    McGee DJ; Zabaleta J; Viator RJ; Testerman TL; Ochoa AC; Mendz GL
    Eur J Biochem; 2004 May; 271(10):1952-62. PubMed ID: 15128304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical studies on Helicobacter pylori arginase: insight into the difference in activity compared to other arginases.
    Srivastava A; Sau AK
    IUBMB Life; 2010 Dec; 62(12):906-15. PubMed ID: 21190293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression, purification and characterization of arginase from Helicobacter pylori in its apo form.
    Zhang J; Zhang X; Wu C; Lu D; Guo G; Mao X; Zhang Y; Wang DC; Li D; Zou Q
    PLoS One; 2011; 6(10):e26205. PubMed ID: 22028830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the role of a unique SSEHA motif in the activity and stability of Helicobacter pylori arginase.
    Srivastava A; Dwivedi N; Samanta U; Sau AK
    IUBMB Life; 2011 Nov; 63(11):1027-36. PubMed ID: 22031496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity.
    McGee DJ; Radcliff FJ; Mendz GL; Ferrero RL; Mobley HL
    J Bacteriol; 1999 Dec; 181(23):7314-22. PubMed ID: 10572136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic microheterogeneity and phenotypic variation of Helicobacter pylori arginase in clinical isolates.
    Hovey JG; Watson EL; Langford ML; Hildebrandt E; Bathala S; Bolland JR; Spadafora D; Mendz GL; McGee DJ
    BMC Microbiol; 2007 Apr; 7():26. PubMed ID: 17408487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional insights into the regulation of Helicobacter pylori arginase activity by an evolutionary nonconserved motif.
    Srivastava A; Meena SK; Alam M; Nayeem SM; Deep S; Sau AK
    Biochemistry; 2013 Jan; 52(3):508-19. PubMed ID: 23270419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helicobacter pylori arginase mutant colonizes arginase II knockout mice.
    Kim SH; Langford ML; Boucher JL; Testerman TL; McGee DJ
    World J Gastroenterol; 2011 Jul; 17(28):3300-9. PubMed ID: 21876618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of a disulphide bond in Helicobacter pylori arginase.
    Srivastava A; Dwivedi N; Sau AK
    Biochem Biophys Res Commun; 2010 May; 395(3):348-51. PubMed ID: 20381458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evolutionary non-conserved motif in Helicobacter pylori arginase mediates positioning of the loop containing the catalytic residue for catalysis.
    Dutta A; Sarkar D; Murarka P; Kausar T; Narayan S; Mazumder M; Ainavarapu SRK; Gourinath S; Sau AK
    Biochem J; 2021 Feb; 478(4):871-894. PubMed ID: 33480396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular modeling of Helicobacter pylori arginase and the inhibitor coordination interactions.
    Azizian H; Bahrami H; Pasalar P; Amanlou M
    J Mol Graph Model; 2010 Apr; 28(7):626-35. PubMed ID: 20080052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ characterization of Helicobacter pylori arginase.
    Mendz GL; Holmes EM; Ferrero RL
    Biochim Biophys Acta; 1998 Nov; 1388(2):465-77. PubMed ID: 9858781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization and preliminary crystallographic studies of Helicobacter pylori arginase.
    Zhang J; Zhang X; Mao X; Zou Q; Li D
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Jun; 67(Pt 6):707-9. PubMed ID: 21636918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Illuminating the structure-function landscape of an evolutionary nonconserved motif in the arginases of Helicobacter gastric pathogens.
    Sarkar D; Sau AK
    IUBMB Life; 2023 Oct; 75(10):782-793. PubMed ID: 37086465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo complementation of the Helicobacter pylori arginase mutant using an intergenic chromosomal site.
    Langford ML; Zabaleta J; Ochoa AC; Testerman TL; McGee DJ
    Helicobacter; 2006 Oct; 11(5):477-93. PubMed ID: 16961811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginase of Helicobacter Gastric Pathogens Uses a Unique Set of Non-catalytic Residues for Catalysis.
    George G; Kombrabail M; Raninga N; Sau AK
    Biophys J; 2017 Mar; 112(6):1120-1134. PubMed ID: 28355540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional profiling of gastric epithelial cells infected with wild type or arginase-deficient Helicobacter pylori.
    Kim SH; Sierra RA; McGee DJ; Zabaleta J
    BMC Microbiol; 2012 Aug; 12():175. PubMed ID: 22889111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of Helicobacter pylori spermidine synthase: a Rossmann-like fold with a distinct active site.
    Lu PK; Tsai JY; Chien HY; Huang H; Chu CH; Sun YJ
    Proteins; 2007 May; 67(3):743-54. PubMed ID: 17357156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and structural properties of inorganic pyrophosphatase from the pathogenic bacterium Helicobacter pylori.
    Chao TC; Huang H; Tsai JY; Huang CY; Sun YJ
    Proteins; 2006 Nov; 65(3):670-80. PubMed ID: 16988955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.