BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 23454377)

  • 41. Binding mode of [ruthenium(II) (1,10-phenanthroline)2L]2+ with poly (dT*dA-dT) triplex. Ligand size effect on third-strand stabilization.
    Choi SD; Kim MS; Kim SK; Lincoln P; Tuite E; Nordén B
    Biochemistry; 1997 Jan; 36(1):214-23. PubMed ID: 8993336
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of fluorescein-labeled oligonucleotide for analysis of formation and dissociation kinetics of T:A:T triple-stranded DNA: effect of divalent cations.
    Ellouze C; Piot F; Takahashi M
    J Biochem; 1997 Mar; 121(3):521-6. PubMed ID: 9133621
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative studies on the DNA-binding properties of linear and angular dibenzoquinolizinium ions.
    Ihmels H; Otto D; Dall'Acqua F; Faccio A; Moro S; Viola G
    J Org Chem; 2006 Oct; 71(22):8401-11. PubMed ID: 17064012
    [TBL] [Abstract][Full Text] [Related]  

  • 44. B-X transition in synthetic and natural (dA-dT)n.(dA-dT)n sequences.
    Votavová H; Sponar J
    J Biomol Struct Dyn; 1988 Apr; 5(5):981-95. PubMed ID: 3271504
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A-tract DNA disfavours triplex formation.
    Sandström K; Wärmländer S; Gräslund A; Leijon M
    J Mol Biol; 2002 Jan; 315(4):737-48. PubMed ID: 11812143
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phase equilibrium in poly(rA).poly(rU) complexes with Cd2+ and Mg2+ ions, studied by ultraviolet, infrared, and vibrational circular dichroism spectroscopy.
    Blagoi Y; Gladchenko G; Nafie LA; Freedman TB; Sorokin V; Valeev V; He Y
    Biopolymers; 2005 Aug; 78(5):275-86. PubMed ID: 15892121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monovalent cation size and DNA conformational stability.
    Stellwagen E; Muse JM; Stellwagen NC
    Biochemistry; 2011 Apr; 50(15):3084-94. PubMed ID: 21410141
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neomycin binding to Watson-Hoogsteen (W-H) DNA triplex groove: a model.
    Arya DP; Micovic L; Charles I; Coffee RL; Willis B; Xue L
    J Am Chem Soc; 2003 Apr; 125(13):3733-44. PubMed ID: 12656603
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of 9-O-(ω-amino) alkyl ether berberine analogs with poly(dT)·poly(dA)*poly(dT) triplex and poly(dA)·poly(dT) duplex: a comparative study.
    Bhowmik D; Kumar GS
    Mol Biol Rep; 2013 Sep; 40(9):5439-50. PubMed ID: 23666107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spectroscopic studies on the interaction of aristololactam-beta-D-glucoside with DNA and RNA double and triple helices: A comparative study.
    Ray A; Kumar GS; Das S; Maiti M
    Biochemistry; 1999 May; 38(19):6239-47. PubMed ID: 10320353
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural specificity effects of trivalent polyamine analogues on the stabilization and conformational plasticity of triplex DNA.
    Thomas TJ; Kulkarni GD; Greenfield NJ; Shirahata A; Thomas T
    Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):591-9. PubMed ID: 8912699
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Label-free emission assay of mercuric ions using DNA duplexes of poly(dT).
    Oh BN; Park S; Ren J; Jang YJ; Kim SK; Kim J
    Dalton Trans; 2011 Jun; 40(24):6494-9. PubMed ID: 21562667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure of poly (dT).poly (dA).poly (dT).
    Chandrasekaran R; Giacometti A; Arnott S
    J Biomol Struct Dyn; 2000 Jun; 17(6):1011-22. PubMed ID: 10949168
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A cooperative beads-on-a-string approach to exceptionally stable DNA triplexes.
    Zheng Y; Long H; Schatz GC; Lewis FD
    Chem Commun (Camb); 2006 Sep; (36):3830-2. PubMed ID: 16969472
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides.
    Michel T; Debart F; Heitz F; Vasseur JJ
    Chembiochem; 2005 Jul; 6(7):1254-62. PubMed ID: 15912553
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies of DNA dumbbells. V. A DNA triplex formed between a 28 base-pair DNA dumbbell substrate and a 16 base linear single strand.
    Paner TM; Gallo FJ; Doktycz MJ; Benight AS
    Biopolymers; 1993 Dec; 33(12):1779-89. PubMed ID: 8268406
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Promotion of duplex and triplex DNA formation by polycation comb-type copolymers.
    Torigoe H; Maruyama A
    Methods Mol Med; 2001; 65():209-24. PubMed ID: 21318757
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of backbone structure on polycation comb-type copolymer/DNA interactions and the molecular assembly of DNA.
    Sato Y; Kobayashi Y; Kamiya T; Watanabe H; Akaike T; Yoshikawa K; Maruyama A
    Biomaterials; 2005 Mar; 26(7):703-11. PubMed ID: 15350774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of ancillary ligands on the interaction of ruthenium(II) complexes with the triplex RNA poly(U)·poly(A)*poly(U).
    Li J; Sun Y; Xie L; He X; Tan L
    J Inorg Biochem; 2015 Feb; 143():56-63. PubMed ID: 25528478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.