These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 23454385)
1. Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts. Zhang J; Chen WT; Zhang P; Luo Z; Zhang Y Bioresour Technol; 2013 Apr; 133():389-97. PubMed ID: 23454385 [TBL] [Abstract][Full Text] [Related]
2. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Xu Y; Zheng X; Yu H; Hu X Bioresour Technol; 2014 Mar; 156():1-5. PubMed ID: 24472700 [TBL] [Abstract][Full Text] [Related]
3. Thermo-chemical conversion of Chlorella pyrenoidosa to liquid biofuels. Duan P; Jin B; Xu Y; Yang Y; Bai X; Wang F; Zhang L; Miao J Bioresour Technol; 2013 Apr; 133():197-205. PubMed ID: 23425587 [TBL] [Abstract][Full Text] [Related]
4. Non-catalytic hydropyrolysis of microalgae to produce liquid biofuels. Duan P; Bai X; Xu Y; Zhang A; Wang F; Zhang L; Miao J Bioresour Technol; 2013 May; 136():626-34. PubMed ID: 23567740 [TBL] [Abstract][Full Text] [Related]
5. Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst. Yang C; Jia L; Chen C; Liu G; Fang W Bioresour Technol; 2011 Mar; 102(6):4580-4. PubMed ID: 21262568 [TBL] [Abstract][Full Text] [Related]
6. Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Gai C; Zhang Y; Chen WT; Zhou Y; Schideman L; Zhang P; Tommaso G; Kuo CT; Dong Y Bioresour Technol; 2015 May; 184():328-335. PubMed ID: 25466993 [TBL] [Abstract][Full Text] [Related]
7. Lewis acid-catalyzed in situ transesterification/esterification of microalgae in supercritical ethanol. Jin B; Duan P; Xu Y; Wang B; Wang F; Zhang L Bioresour Technol; 2014 Jun; 162():341-9. PubMed ID: 24768889 [TBL] [Abstract][Full Text] [Related]
8. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction. Cheng J; Huang R; Yu T; Li T; Zhou J; Cen K Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493 [TBL] [Abstract][Full Text] [Related]
9. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449 [TBL] [Abstract][Full Text] [Related]
10. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Wang F; Chang Z; Duan P; Yan W; Xu Y; Zhang L; Miao J; Fan Y Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857 [TBL] [Abstract][Full Text] [Related]
11. Co-liquefaction of micro- and macroalgae in subcritical water. Jin B; Duan P; Xu Y; Wang F; Fan Y Bioresour Technol; 2013 Dec; 149():103-10. PubMed ID: 24096026 [TBL] [Abstract][Full Text] [Related]
12. Catalytic conversion of Chlorella pyrenoidosa to biofuels in supercritical alcohols over zeolites. Yang L; Ma R; Ma Z; Li Y Bioresour Technol; 2016 Jun; 209():313-7. PubMed ID: 26990399 [TBL] [Abstract][Full Text] [Related]
13. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. Gai C; Li Y; Peng N; Fan A; Liu Z Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472 [TBL] [Abstract][Full Text] [Related]
14. Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures. Yang W; Li X; Li Z; Tong C; Feng L Bioresour Technol; 2015 Nov; 196():99-108. PubMed ID: 26231129 [TBL] [Abstract][Full Text] [Related]
15. Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids. Biller P; Riley R; Ross AB Bioresour Technol; 2011 Apr; 102(7):4841-8. PubMed ID: 21295976 [TBL] [Abstract][Full Text] [Related]
16. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae. Duan P; Wang B; Xu Y Bioresour Technol; 2015 Jun; 186():58-66. PubMed ID: 25802049 [TBL] [Abstract][Full Text] [Related]
17. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. Hu Y; Feng S; Yuan Z; Xu CC; Bassi A Bioresour Technol; 2017 Sep; 239():151-159. PubMed ID: 28521224 [TBL] [Abstract][Full Text] [Related]
18. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water. Chen Y; Wu Y; Zhang P; Hua D; Yang M; Li C; Chen Z; Liu J Bioresour Technol; 2012 Nov; 124():190-8. PubMed ID: 22989646 [TBL] [Abstract][Full Text] [Related]
19. Combustion performance of biocrude oil from solvolysis liquefaction of Chlorella pyrenoidosa by thermogravimetry-Fourier transform infrared spectroscopy. Peng X; Ma X; Lin Y; Wang J; Wei X; Chen X Bioresour Technol; 2017 Aug; 238():510-518. PubMed ID: 28475993 [TBL] [Abstract][Full Text] [Related]
20. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Vardon DR; Sharma BK; Blazina GV; Rajagopalan K; Strathmann TJ Bioresour Technol; 2012 Apr; 109():178-87. PubMed ID: 22285293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]