These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23454435)

  • 1. Investigating the cryoablative efficacy of a hybrid cryoprobe operating under freeze-thaw cycles.
    Zhao X; Chua KJ
    Cryobiology; 2013 Jun; 66(3):239-49. PubMed ID: 23454435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying the performance of bifurcate cryoprobes based on shape factor of cryoablative zones.
    Zhao X; Chua KJ
    Cryobiology; 2014 Jun; 68(3):309-17. PubMed ID: 24792542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulating the cryo-freezing region of biological tissue with a controlled thermal device.
    Zhao X; Chua KJ
    Med Eng Phys; 2014 Mar; 36(3):325-34. PubMed ID: 24373637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The operation and efficacy of cryosurgical, nitrous oxide-driven cryoprobe. I. Cryoprobe physical characteristics: their effects on cell cryodestruction.
    Homasson JP; Thiery JP; Angebault M; Ovtracht L; Maiwand O
    Cryobiology; 1994 Jun; 31(3):290-304. PubMed ID: 8050273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations on multiprobe freezing of irregularly shaped tumors.
    Chua KJ
    Comput Biol Med; 2011 Jul; 41(7):493-505. PubMed ID: 21621757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of iceball diameter and temperature distribution achieved with 3-mm accuprobe cryoprobes in porcine and human liver tissue and human colorectal liver metastases in vitro.
    Popken F; Seifert JK; Engelmann R; Dutkowski P; Nassir F; Junginger T
    Cryobiology; 2000 Jun; 40(4):302-10. PubMed ID: 10924262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and estimation of a novel cryoprobe utilizing the Peltier effect for precise and safe cryosurgery.
    Takeda H; Maruyama S; Okajima J; Aiba S; Komiya A
    Cryobiology; 2009 Dec; 59(3):275-84. PubMed ID: 19723517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the stable frozen zone volume and the extent of contrast for a therapeutic substance.
    Korpan NN; Chefranov SG
    PLoS One; 2020; 15(9):e0238929. PubMed ID: 32941449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On freeze-thaw sequence of vital organ of assuming the cryoablation for malignant lung tumors by using cryoprobe as heat source.
    Nakatsuka S; Yashiro H; Inoue M; Kuribayashi S; Kawamura M; Izumi Y; Tsukada N; Yamauchi Y; Hashimoto K; Iwata K; Nagasawa T; Lin YS
    Cryobiology; 2010 Dec; 61(3):317-26. PubMed ID: 21036162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of dual- and triple-freeze protocols for hepatic cryoablation in a Tibet pig model.
    Li J; Chen J; Zhou L; Zeng J; Yao F; Wu B; Fang G; Deng C; Chen Z; Leng Y; Xu K; Niu L; Zuo J; Xu K
    Cryobiology; 2012 Aug; 65(1):68-71. PubMed ID: 22561141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model of temperature distribution in frozen tissue.
    Poledna J; Berger W
    Gen Physiol Biophys; 1996 Feb; 15(1):3-15. PubMed ID: 8902553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Needle Implantation Cryoprobes: Biophysical and Thermal Characteristics.
    Lam CM; Shimi SM
    Semin Laparosc Surg; 1997 Jun; 4(2):89-95. PubMed ID: 10401145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized solution and estimation method for cooling performance of downscaled cryoprobe.
    Okajima J
    J Therm Biol; 2019 May; 82():213-221. PubMed ID: 31128650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 24-gauge ultrafine cryoprobe with diameter of 550 μm and its cooling performance.
    Okajima J; Komiya A; Maruyama S
    Cryobiology; 2014 Dec; 69(3):411-8. PubMed ID: 25305055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal characteristics of a hepatic cryolesion formed in vitro by a 3-mm implantable cryoprobe.
    Lam CM; Shimi SM; Cuschieri A
    Cryobiology; 1998 Mar; 36(2):156-64. PubMed ID: 9527875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analytical study on the thermal effects of cryosurgery on selective cell destruction.
    Chua KJ; Chou SK; Ho JC
    J Biomech; 2007; 40(1):100-16. PubMed ID: 16368100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of prostatic cryosurgery with multi-cryoprobe based on refrigerant flow.
    Hossain SMC; Zhang X; Haider Z; Hu P; Zhao G
    J Therm Biol; 2018 Aug; 76():58-67. PubMed ID: 30143298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Temperature distribution pattern in liver tissue in freezing procedures with new cryoprobes].
    Berger WK; Schüder G; Feifel G
    Chirurg; 1996 Aug; 67(8):833-8. PubMed ID: 8964156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The performance of 17-gauge cryoprobes in vitro.
    Beemster PW; Lagerveld BW; Witte LP; de la Rosette JJ; Pes MP; Wijkstra H
    Technol Cancer Res Treat; 2008 Aug; 7(4):321-7. PubMed ID: 18642970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach to improve the efficacy of tumour ablation during cryosurgery.
    Ramajayam KK; Kumar A
    Cryobiology; 2013 Oct; 67(2):201-13. PubMed ID: 23867079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.