These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2345449)

  • 1. The effect of compliance on wall shear in casts of a human aortic bifurcation.
    Duncan DD; Bargeron CB; Borchardt SE; Deters OJ; Gearhart SA; Mark FF; Friedman MH
    J Biomech Eng; 1990 May; 112(2):183-8. PubMed ID: 2345449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of wall motion and wall shear in a compliant arterial cast.
    Deters OJ; Bargeron CB; Mark FF; Friedman MH
    J Biomech Eng; 1986 Nov; 108(4):355-8. PubMed ID: 3795882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of pulsatile frequency on wall shear in a compliant cast of a human aortic bifurcation.
    Kuban BD; Friedman MH
    J Biomech Eng; 1995 May; 117(2):219-23. PubMed ID: 7666659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of arterial compliance and non-Newtonian rheology on correlations between intimal thickness and wall shear.
    Friedman MH; Bargeron CB; Duncan DD; Hutchins GM; Mark FF
    J Biomech Eng; 1992 Aug; 114(3):317-20. PubMed ID: 1326063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D-LDA study of the relation between wall shear stress and intimal thickness in a human aortic bifurcation.
    Hayashi K; Yanai Y; Naiki T
    J Biomech Eng; 1996 Aug; 118(3):273-9. PubMed ID: 8872247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wall shear rate distribution in an abdominal aortic bifurcation model: effects of vessel compliance and phase angle between pressure and flow waveforms.
    Lee CS; Tarbell JM
    J Biomech Eng; 1997 Aug; 119(3):333-42. PubMed ID: 9285347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear stress at a compliant model of the human carotid bifurcation.
    Anayiotos AS; Jones SA; Giddens DP; Glagov S; Zarins CK
    J Biomech Eng; 1994 Feb; 116(1):98-106. PubMed ID: 8189720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of steady and pulsatile flow in a double branching arterial model.
    Lutz RJ; Hsu L; Menawat A; Zrubek J; Edwards K
    J Biomech; 1983; 16(9):753-66. PubMed ID: 6643546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of flow partition on wall shear in a cast of a human coronary artery.
    Bargeron CB; Deters OJ; Mark FF; Friedman MH
    Cardiovasc Res; 1988 May; 22(5):340-4. PubMed ID: 2973373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of laser-Doppler-velocity measurements and endothelial cell shape in a stenosed dog aorta.
    Liepsch DW; Levesque M; Nerem RM; Moravec ST
    Adv Exp Med Biol; 1988; 242():43-50. PubMed ID: 2977525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of human arterial morphology with hemodynamic measurements in arterial casts.
    Friedman MH; Hutchins GM; Bargeron CB; Deters OJ; Mark FF
    J Biomech Eng; 1981 Aug; 103(3):204-7. PubMed ID: 7278199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure drop and flow rate measurements in a human aortic bifurcation cast for steady and pulsatile flow.
    Klanchar M; Tarbell JM
    J Biomech; 1989; 22(5):491-500. PubMed ID: 2777824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The shear rate at the wall in a symmetrically branched tube simulating the aortic bifurcation.
    Walburn FJ; Stein PD
    Biorheology; 1982; 19(1/2):307-16. PubMed ID: 6212090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow characteristics in symmetrically branched tubes simulating the human aortic bifurcation.
    Walburn F; Stein P
    J Biomech Eng; 1980 Nov; 102(4):340-2. PubMed ID: 6965198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between wall shear and intimal thickness at a coronary artery branch.
    Friedman MH; Bargeron CB; Deters OJ; Hutchins GM; Mark FF
    Atherosclerosis; 1987 Nov; 68(1-2):27-33. PubMed ID: 3689481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of steady and pulsatile flow near the ventral and dorsal walls of casts of human aortic bifurcations.
    Deters OJ; Mark FF; Bargeron CB; Friedman MH; Hutchins GM
    J Biomech Eng; 1984 Feb; 106(1):79-82. PubMed ID: 6727318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computer simulation of the blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    Biomed Mater Eng; 1991; 1(3):173-93. PubMed ID: 1842515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validated computation of physiologic flow in a realistic coronary artery branch.
    Perktold K; Hofer M; Rappitsch G; Loew M; Kuban BD; Friedman MH
    J Biomech; 1998 Mar; 31(3):217-28. PubMed ID: 9645536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow Characteristics in an Anatomically Realistic Compliant Carotid Artery Bifurcation Model.
    Karner G; Perktold K; Hofer M; Liepsch D
    Comput Methods Biomech Biomed Engin; 1999; 2(3):171-185. PubMed ID: 11264826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model.
    Boersen JT; Groot Jebbink E; Versluis M; Slump CH; Ku DN; de Vries JPM; Reijnen MMPJ
    J Vasc Surg; 2017 Dec; 66(6):1844-1853. PubMed ID: 28285931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.