These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 2345451)
1. On the application of a constitutive equation for whole human blood. Rodkiewicz CM; Sinha P; Kennedy JS J Biomech Eng; 1990 May; 112(2):198-206. PubMed ID: 2345451 [TBL] [Abstract][Full Text] [Related]
2. A three--dimensional dyadic Walburn-Schneck constitutive equation for blood. Easthope P Biorheology; 1989; 26(1):37-44. PubMed ID: 2804273 [TBL] [Abstract][Full Text] [Related]
3. A study on the constitutive equation of blood. Luo XY; Kuang ZB J Biomech; 1992 Aug; 25(8):929-34. PubMed ID: 1639837 [TBL] [Abstract][Full Text] [Related]
4. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube. El-Khatib FH; Damiano ER Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417 [TBL] [Abstract][Full Text] [Related]
5. Pulsatile flow of Casson's fluid through stenosed arteries with applications to blood flow. Chaturani P; Samy RP Biorheology; 1986; 23(5):499-511. PubMed ID: 3651573 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration. Ponalagusamy R; Priyadharshini S Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445 [TBL] [Abstract][Full Text] [Related]
7. Pulsatile non-Newtonian blood flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles. Perktold K; Peter RO; Resch M; Langs G J Biomed Eng; 1991 Nov; 13(6):507-15. PubMed ID: 1770813 [TBL] [Abstract][Full Text] [Related]
8. A model for blood flow through a stenotic tube. Tandon PN; Rana UV; Kawahara M; Katiyar VK Int J Biomed Comput; 1993 Jan; 32(1):61-78. PubMed ID: 8425753 [TBL] [Abstract][Full Text] [Related]
9. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery. Ramiar A; Larimi MM; Ranjbar AA Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216 [TBL] [Abstract][Full Text] [Related]
10. Wall shear stress distribution in the human carotid siphon during pulsatile flow. Perktold K; Florian H; Hilbert D; Peter R J Biomech; 1988; 21(8):663-71. PubMed ID: 3170620 [TBL] [Abstract][Full Text] [Related]
11. A perturbation model for the oscillatory flow of a Bingham plastic in rigid and periodically displaced tubes. De Chant LJ J Biomech Eng; 1999 Oct; 121(5):502-4. PubMed ID: 10529917 [TBL] [Abstract][Full Text] [Related]
12. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Kabinejadian F; Ghista DN Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834 [TBL] [Abstract][Full Text] [Related]
13. Flow investigations in a model of a three-dimensional human artery with Newtonian and non-Newtonian fluids. Part I. Moravec S; Liepsch D Biorheology; 1983; 20(6):745-59. PubMed ID: 6661526 [TBL] [Abstract][Full Text] [Related]
15. Wall shear stress variations and unsteadiness of pulsatile blood-like flows in 90-degree bifurcations. van Wyk S; Prahl Wittberg L; Fuchs L Comput Biol Med; 2013 Sep; 43(8):1025-36. PubMed ID: 23816175 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions. Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010 [TBL] [Abstract][Full Text] [Related]
17. [Non-newtonian behavior of blood and parietal shear stress in a Poiseuille flow]. Wang X; Stoltz JF J Mal Vasc; 1995; 20(2):117-21. PubMed ID: 7650437 [TBL] [Abstract][Full Text] [Related]
18. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study. Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643 [TBL] [Abstract][Full Text] [Related]
19. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model. Akbarzadeh P Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174 [TBL] [Abstract][Full Text] [Related]
20. Experimental flow studies in an elastic Y-model. Mijovic B; Liepsch D Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]