These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23454704)

  • 21. Swimmer risk of gastrointestinal illness from exposure to tropical coastal waters impacted by terrestrial dry-weather runoff.
    Viau EJ; Lee D; Boehm AB
    Environ Sci Technol; 2011 Sep; 45(17):7158-65. PubMed ID: 21780808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.
    Wu L; Long TY; Li CM
    Water Sci Technol; 2010; 61(6):1601-16. PubMed ID: 20351440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Occurrence of Traditional and Alternative Fecal Indicators in Tropical Urban Environments under Different Land Use Patterns.
    Saeidi N; Gu X; Tran NH; Goh SG; Kitajima M; Kushmaro A; Schmitz BW; Gin KY
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29776926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA.
    He LM; He ZL
    Water Res; 2008 May; 42(10-11):2563-73. PubMed ID: 18242661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection and source identification of faecal pollution in non-sewered catchment by means of host-specific molecular markers.
    Ahmed W; Powell D; Goonetilleke A; Gardner T
    Water Sci Technol; 2008; 58(3):579-86. PubMed ID: 18725724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Associations among pathogenic bacteria, parasites, and environmental and land use factors in multiple mixed-use watersheds.
    Wilkes G; Edge TA; Gannon VP; Jokinen C; Lyautey E; Neumann NF; Ruecker N; Scott A; Sunohara M; Topp E; Lapen DR
    Water Res; 2011 Nov; 45(18):5807-25. PubMed ID: 21889781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of rainfall on the incidence of microbial faecal indicators and the dominant sources of faecal pollution in a Florida river.
    Shehane SD; Harwood VJ; Whitlock JE; Rose JB
    J Appl Microbiol; 2005; 98(5):1127-36. PubMed ID: 15836482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A case study characterizing animal fecal sources in surface water using a mitochondrial DNA marker.
    Bucci JP; Shattuck MD; Aytur SA; Carey R; McDowell WH
    Environ Monit Assess; 2017 Aug; 189(8):406. PubMed ID: 28730580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterizing fecal contamination in stormwater runoff in coastal North Carolina, USA.
    Parker JK; McIntyre D; Noble RT
    Water Res; 2010 Jul; 44(14):4186-94. PubMed ID: 20617564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial water quality in freshwater lakes with different land use.
    Staley ZR; Chase E; Mitraki C; Crisman TL; Harwood VJ
    J Appl Microbiol; 2013 Nov; 115(5):1240-50. PubMed ID: 23889752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A watershed study assessing effects of commercial hog operations on microbial water quality in North Carolina, USA.
    Christenson E; Wickersham L; Jacob M; Stewart J
    Sci Total Environ; 2022 Sep; 838(Pt 2):156085. PubMed ID: 35605858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loading of fecal indicator bacteria in North Carolina tidal creek headwaters: hydrographic patterns and terrestrial runoff relationships.
    Stumpf CH; Piehler MF; Thompson S; Noble RT
    Water Res; 2010 Sep; 44(16):4704-15. PubMed ID: 20673947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of seasonal and inter-annual hydro-meteorological variability on surface water fecal coliform concentration under varying land-use composition.
    St Laurent J; Mazumder A
    Water Res; 2014 Jan; 48():170-8. PubMed ID: 24095594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Models of total and presumed wildlife sources of fecal coliform bacteria in coastal ponds.
    Siewicki TC; Pullaro T; Pan W; McDaniel S; Glenn R; Stewart J
    J Environ Manage; 2007 Jan; 82(1):120-32. PubMed ID: 16556478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semi-quantitative evaluation of fecal contamination potential by human and ruminant sources using multiple lines of evidence.
    Stoeckel DM; Stelzer EA; Stogner RW; Mau DP
    Water Res; 2011 May; 45(10):3225-44. PubMed ID: 21513966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolating the impact of septic systems on fecal pollution in streams of suburban watersheds in Georgia, United States.
    Sowah RA; Habteselassie MY; Radcliffe DE; Bauske E; Risse M
    Water Res; 2017 Jan; 108():330-338. PubMed ID: 27847149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.
    Staley C; Reckhow KH; Lukasik J; Harwood VJ
    Water Res; 2012 Nov; 46(17):5799-5812. PubMed ID: 22939220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Fecal Indicator Bacteria Using Spatial Stream Network Models in A Mixed-Land-Use Suburban Watershed in New Jersey, USA.
    Hsu TD; Yu D; Wu M
    Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Basin-wide analysis of the dynamics of fecal contamination and fecal source identification in Tillamook Bay, Oregon.
    Shanks OC; Nietch C; Simonich M; Younger M; Reynolds D; Field KG
    Appl Environ Microbiol; 2006 Aug; 72(8):5537-46. PubMed ID: 16885307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Levels and patterns of fecal indicator bacteria in stormwater runoff from homogenous land use sites and urban watersheds.
    Tiefenthaler L; Stein ED; Schiff KC
    J Water Health; 2011 Jun; 9(2):279-90. PubMed ID: 21942193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.