BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23454803)

  • 1. Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: effects of molecular structure of sugar substrate.
    Hu X; Wu L; Wang Y; Song Y; Mourant D; Gunawan R; Gholizadeh M; Li CZ
    Bioresour Technol; 2013 Apr; 133():469-74. PubMed ID: 23454803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2015 Apr; 8(8):1411-28. PubMed ID: 25821128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.
    Jeong TS; Choi CH; Lee JY; Oh KK
    Bioresour Technol; 2012 Jul; 116():435-40. PubMed ID: 22522017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mass spectrometric study of the acid-catalysed d-fructose dehydration in the gas phase.
    Pepi F; Ricci A; Garzoli S; Troiani A; Salvitti C; Di Rienzo B; Giacomello P
    Carbohydr Res; 2015 Sep; 413():145-50. PubMed ID: 26122965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of sugars and levulinic acid from marine biomass Gelidium amansii.
    Jeong GT; Park DH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):41-52. PubMed ID: 19830598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media.
    Choudhary V; Mushrif SH; Ho C; Anderko A; Nikolakis V; Marinkovic NS; Frenkel AI; Sandler SI; Vlachos DG
    J Am Chem Soc; 2013 Mar; 135(10):3997-4006. PubMed ID: 23432136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural.
    Jeong GT; Ra CH; Hong YK; Kim JK; Kong IS; Kim SK; Park DH
    Bioprocess Biosyst Eng; 2015 Feb; 38(2):207-17. PubMed ID: 25042893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water.
    Daorattanachai P; Viriya-empikul N; Laosiripojana N; Faungnawakij K
    Bioresour Technol; 2013 Sep; 144():504-12. PubMed ID: 23907066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing dilute-acid pretreatment of rapeseed straw for extraction of hemicellulose.
    Jeong TS; Um BH; Kim JS; Oh KK
    Appl Biochem Biotechnol; 2010 May; 161(1-8):22-33. PubMed ID: 20087686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural.
    Karinen R; Vilonen K; Niemelä M
    ChemSusChem; 2011 Aug; 4(8):1002-16. PubMed ID: 21728248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.
    Ya'aini N; Amin NA; Asmadi M
    Bioresour Technol; 2012 Jul; 116():58-65. PubMed ID: 22609656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Soluble Lignin on the Formic Acid-Catalyzed Formation of Furfural: A Case Study for the Upgrading of Hemicellulose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2016 Mar; 9(5):492-504. PubMed ID: 26805656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods.
    Assary RS; Kim T; Low JJ; Greeley J; Curtiss LA
    Phys Chem Chem Phys; 2012 Dec; 14(48):16603-11. PubMed ID: 22932938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions.
    van Zandvoort I; Wang Y; Rasrendra CB; van Eck ER; Bruijnincx PC; Heeres HJ; Weckhuysen BM
    ChemSusChem; 2013 Sep; 6(9):1745-58. PubMed ID: 23836679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.
    Dussan K; Girisuta B; Haverty D; Leahy JJ; Hayes MH
    Bioresour Technol; 2013 Dec; 149():216-24. PubMed ID: 24103645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst.
    Yang F; Liu Q; Bai X; Du Y
    Bioresour Technol; 2011 Feb; 102(3):3424-9. PubMed ID: 21036606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between liquid and solid acids catalysts on reducing sugars conversion from furfural residues via pretreatments.
    Lin K; Ma B; Sun Y; Liu W
    Bioresour Technol; 2014 Sep; 167():133-6. PubMed ID: 24976491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of glucose into furans in the presence of AlCl3 in an ethanol-water solvent system.
    Yang Y; Hu C; Abu-Omar MM
    Bioresour Technol; 2012 Jul; 116():190-4. PubMed ID: 22609675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction and hydrolysis of levoglucosan from pyrolysis oil.
    Bennett NM; Helle SS; Duff SJ
    Bioresour Technol; 2009 Dec; 100(23):6059-63. PubMed ID: 19616934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of fructose, glucose, and cellulose to 5-hydroxymethylfurfural by alkaline earth phosphate catalysts in hot compressed water.
    Daorattanachai P; Khemthong P; Viriya-Empikul N; Laosiripojana N; Faungnawakij K
    Carbohydr Res; 2012 Dec; 363():58-61. PubMed ID: 23123573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.