These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 2345486)
1. Adenosine depresses spontaneous transmitter release from frog motor nerve terminals by acting at an A1-like receptor. Barry SR Life Sci; 1990; 46(19):1389-97. PubMed ID: 2345486 [TBL] [Abstract][Full Text] [Related]
2. Adenosine A1 and non-A1 receptors: intracellular analysis of the actions of adenosine agonists and antagonists in rat hippocampal neurons. Ameri A; Jurna I Brain Res; 1991 Apr; 546(1):69-78. PubMed ID: 1855150 [TBL] [Abstract][Full Text] [Related]
3. Dual effects of theophylline on spontaneous transmitter release from frog motor nerve terminals. Barry SR J Neurosci; 1988 Dec; 8(12):4427-33. PubMed ID: 2904489 [TBL] [Abstract][Full Text] [Related]
4. Effects of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a highly selective adenosine receptor antagonist, on force of contraction in guinea-pig atrial and ventricular cardiac preparations. von der Leyen H; Schmitz W; Scholz H; Scholz J; Lohse MJ; Schwabe U Naunyn Schmiedebergs Arch Pharmacol; 1989 Aug; 340(2):204-9. PubMed ID: 2554151 [TBL] [Abstract][Full Text] [Related]
5. Inhibitory and excitatory effects of adenosine receptor agonists on evoked transmitter release from phrenic nerve ending of the rat. Correia-de-Sá P; Sebastião AM; Ribeiro JA Br J Pharmacol; 1991 Jun; 103(2):1614-20. PubMed ID: 1679362 [TBL] [Abstract][Full Text] [Related]
6. Presynaptic P1-purinoceptors in jejunal branches of the rabbit mesenteric artery and their possible function. Illes P; Jackisch R; Regenold JT J Physiol; 1988 Mar; 397():13-29. PubMed ID: 2842492 [TBL] [Abstract][Full Text] [Related]
7. A1 adenosine receptor inhibition of cyclic AMP formation and radioligand binding in the guinea-pig cerebral cortex. Alexander SP; Curtis AR; Kendall DA; Hill SJ Br J Pharmacol; 1994 Dec; 113(4):1501-7. PubMed ID: 7889308 [TBL] [Abstract][Full Text] [Related]
8. Differential antagonism by 1,3-dipropylxanthine-8-cyclopentylxanthine and 9-chloro-2-(2-furanyl)-5,6-dihydro-1,2,4-triazolo(1,5-c)quinazolin-5-im ine of the effects of adenosine derivatives in the presence of isoprenaline on contractile response and cyclic AMP content in cardiomyocytes. Evidence for the coexistence of A1- and A2-adenosine receptors on cardiomyocytes. Behnke N; Müller W; Neumann J; Schmitz W; Scholz H; Stein B J Pharmacol Exp Ther; 1990 Sep; 254(3):1017-23. PubMed ID: 2168481 [TBL] [Abstract][Full Text] [Related]
9. Evidence that adenosine receptors in the dog left atrium are not of the typical A1 or A2 adenosine receptor subtypes. Martin PL Eur J Pharmacol; 1992 Apr; 214(2-3):199-205. PubMed ID: 1516639 [TBL] [Abstract][Full Text] [Related]
10. On the adenosine receptor and adenosine inactivation at the rat diaphragm neuromuscular junction. Sebastião AM; Ribeiro JA Br J Pharmacol; 1988 May; 94(1):109-20. PubMed ID: 2456805 [TBL] [Abstract][Full Text] [Related]
11. Pharmacological characterization of adenosine A1 and A2 receptors in the bladder: evidence for a modulatory adenosine tone regulating non-adrenergic non-cholinergic neurotransmission. Acevedo CG; Contreras E; Escalona J; Lewin J; Huidobro-Toro JP Br J Pharmacol; 1992 Sep; 107(1):120-6. PubMed ID: 1330155 [TBL] [Abstract][Full Text] [Related]
12. Effects of adenosine on norepinephrine and acetylcholine release from guinea pig right atrium: role of A1-receptors. Nakatsuka H; Nagano O; Földes FF; Nagashima H; Vizi ES Neurochem Int; 1995; 27(4-5):345-53. PubMed ID: 8845735 [TBL] [Abstract][Full Text] [Related]
13. Influences of different adenosine receptor subtypes on catalepsy in mice. Zarrindast MR; Modabber M; Sabetkasai M Psychopharmacology (Berl); 1993; 113(2):257-61. PubMed ID: 7855191 [TBL] [Abstract][Full Text] [Related]
14. Further investigations into adenosine A1 receptor-mediated contraction in rat colonic muscularis mucosae and its augmentation by certain alkylxanthine antagonists. Reeves JJ; Jarvis JE; Sheehan MJ; Strong P Br J Pharmacol; 1995 Mar; 114(5):999-1004. PubMed ID: 7780657 [TBL] [Abstract][Full Text] [Related]
15. On the type of receptor involved in the inhibitory action of adenosine at the neuromuscular junction. Ribeiro JA; Sebastião AM Br J Pharmacol; 1985 Apr; 84(4):911-8. PubMed ID: 2988684 [TBL] [Abstract][Full Text] [Related]
16. Pharmacological analysis of the interaction between purinoceptor agonists and antagonists in the guinea-pig taenia caecum. Prentice DJ; Shankley NP; Black JW Br J Pharmacol; 1995 Jun; 115(4):549-56. PubMed ID: 7582471 [TBL] [Abstract][Full Text] [Related]
17. A1-adenosine receptor-mediated inhibition of isoproterenol-stimulated protein phosphorylation in ventricular myocytes. Evidence against a cAMP-dependent effect. Gupta RC; Neumann J; Durant P; Watanabe AM Circ Res; 1993 Jan; 72(1):65-74. PubMed ID: 8380264 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of three adenosine receptor types. Gurden MF; Coates J; Ellis F; Evans B; Foster M; Hornby E; Kennedy I; Martin DP; Strong P; Vardey CJ Br J Pharmacol; 1993 Jul; 109(3):693-8. PubMed ID: 8358566 [TBL] [Abstract][Full Text] [Related]
19. The inhibitory effects of some adenosine analogues on transmitter release at the mammalian neuromuscular junction. Singh YN; Dryden WF; Chen H Can J Physiol Pharmacol; 1986 Nov; 64(11):1446-50. PubMed ID: 3024786 [TBL] [Abstract][Full Text] [Related]
20. Identification and functional characterization of A1 and A2 adenosine receptors in the rat vas deferens: a comparison with A1 receptors in guinea pig left atrium and A2 receptors in guinea pig aorta. Martin PL; May JM J Pharmacol Exp Ther; 1994 Jun; 269(3):1228-35. PubMed ID: 8014866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]