BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 23454911)

  • 1. Dybowski's sika deer (Cervus nippon hortulorum): genetic divergence between natural primorian and introduced Czech populations.
    Krojerová-Prokesová J; Baranceková M; Voloshina I; Myslenkov A; Lamka J; Koubek P
    J Hered; 2013; 104(3):312-26. PubMed ID: 23454911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogeography of sika deer (Cervus nippon) inferred from mitochondrial cytochrome-b gene and microsatellite DNA.
    Liu H; Ju Y; Tamate H; Wang T; Xing X
    Gene; 2021 Mar; 772():145375. PubMed ID: 33359125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification and phylogeny of sika deer (Cervus nippon) subspecies based on the mitochondrial control region DNA sequence using an extended sample set.
    Ba H; Yang F; Xing X; Li C
    Mitochondrial DNA; 2015 Jun; 26(3):373-9. PubMed ID: 24063645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating temporal changes in hybridization and introgression in a predominantly bimodal hybridizing population of invasive sika (Cervus nippon) and native red deer (C. elaphus) on the Kintyre Peninsula, Scotland.
    Senn HV; Barton NH; Goodman SJ; Swanson GM; Abernethy KA; Pemberton JM
    Mol Ecol; 2010 Mar; 19(5):910-24. PubMed ID: 20102517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: comparison of mitochondrial D-loop region sequences.
    Nagata J; Masuda R; Tamate HB; Hamasaki Si; Ochiai K; Asada M; Tatsuzawa S; Suda K; Tado H; Yoshida MC
    Mol Phylogenet Evol; 1999 Dec; 13(3):511-9. PubMed ID: 10620409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of mitochondrial DNA sequence analysis in the forensic identification of Chinese sika deer subspecies.
    Wu H; Wan QH; Fang SG; Zhang SY
    Forensic Sci Int; 2005 Mar; 148(2-3):101-5. PubMed ID: 15639603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottleneck effects on the sika deer Cervus nippon population in Hokkaido, revealed by ancient DNA analysis.
    Nabata D; Masuda R; Takahashi O; Nagata J
    Zoolog Sci; 2004 Apr; 21(4):473-81. PubMed ID: 15118235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iSCNT embryo culture system for restoration of Cervus nippon hortulorum, presumed to be sika deer in the Korean Peninsula.
    Park YS; Oh MG; Kim SH
    PLoS One; 2024; 19(4):e0300754. PubMed ID: 38635543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region.
    Cook CE; Wang Y; Sensabaugh G
    Mol Phylogenet Evol; 1999 Jun; 12(1):47-56. PubMed ID: 10222160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytogenetic variation in farmed stock of Dybowski's sika deer.
    Jaszczak K; Parada R; Krzywiński A
    Folia Biol (Krakow); 2004; 52(1-2):53-6. PubMed ID: 15521648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Admixture of Eastern and Western European Red Deer Lineages as a Result of Postglacial Recolonization of the Czech Republic (Central Europe).
    Krojerová-Prokešová J; Barančeková M; Koubek P
    J Hered; 2015; 106(4):375-85. PubMed ID: 25918430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phylogenetic comparison of red deer and wapiti using mitochondrial DNA.
    Polziehn RO; Strobeck C
    Mol Phylogenet Evol; 2002 Mar; 22(3):342-56. PubMed ID: 11884159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic relationships among european red deer, wapiti, and sika deer inferred from mitochondrial DNA sequences.
    Kuwayama R; Ozawa T
    Mol Phylogenet Evol; 2000 Apr; 15(1):115-23. PubMed ID: 10764539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographical area.
    Senn HV; Pemberton JM
    Mol Ecol; 2009 Mar; 18(5):862-76. PubMed ID: 19175500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An examination of the origin and evolution of additional tandem repeats in the mitochondrial DNA control region of Japanese sika deer (Cervus Nippon).
    Ba H; Wu L; Liu Z; Li C
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(1):276-81. PubMed ID: 24621225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA.
    Polziehn RO; Strobeck C
    Mol Phylogenet Evol; 1998 Oct; 10(2):249-58. PubMed ID: 9878235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic diversity and population structure of a Sichuan sika deer (Cervus sichuanicus) population in Tiebu Nature Reserve based on microsatellite variation.
    He Y; Wang ZH; Wang XM
    Dongwuxue Yanjiu; 2014 Nov; 35(6):528-36. PubMed ID: 25465089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic variation and population structure of the Japanese sika deer (Cervus nippon) in the Tohoku District based on mitochondrial D-loop sequences.
    Takiguchi H; Tanaka K; Ono K; Hoshi A; Minami M; Yamauchi K; Takatsuki S
    Zoolog Sci; 2012 Jul; 29(7):433-6. PubMed ID: 22775251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the genetic structure of sika deer (Cervus nippon) in Japan's Kanto and Tanzawa mountain areas, based on microsatellite markers.
    Konishi S; Hata S; Matsuda S; Arai K; Mizoguchi Y
    Anim Sci J; 2017 Nov; 88(11):1673-1677. PubMed ID: 28631344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial DNA polymorphism in subspecies of the Japanese Sika deer, Cervus nippon.
    Tamate HB; Tsuchiya T
    J Hered; 1995; 86(3):211-5. PubMed ID: 7608513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.