These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23454953)

  • 1. Carbon nanotube electrical-substitution cryogenic radiometer: initial results.
    Tomlin NA; Lehman JH
    Opt Lett; 2013 Jan; 38(2):175-7. PubMed ID: 23454953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a fiber-coupled picowatt cryogenic radiometer.
    Tomlin NA; Lehman JH; Nam S
    Opt Lett; 2012 Jun; 37(12):2346-8. PubMed ID: 22739903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar hyperblack absolute radiometer.
    Lehman J; Steiger A; Tomlin N; White M; Kehrt M; Ryger I; Stephens M; Monte C; Mueller I; Hollandt J; Dowell M
    Opt Express; 2016 Nov; 24(23):25911-25921. PubMed ID: 27857330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental measurements and noise analysis of a cryogenic radiometer.
    Carr SM; Woods SI; Jung TM; Carter AC; Datla RU
    Rev Sci Instrum; 2014 Jul; 85(7):075105. PubMed ID: 25085171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurements.
    Datla RU; Stock K; Parr AC; Hoyt CC; Miller PJ; Foukal PV
    Appl Opt; 1992 Dec; 31(34):7219-25. PubMed ID: 20802586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Far infrared thermal detectors for laser radiometry using a carbon nanotube array.
    Lehman JH; Lee B; Grossman EN
    Appl Opt; 2011 Jul; 50(21):4099-104. PubMed ID: 21772397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room temperature laser power standard using a microfabricated, electrical substitution bolometer.
    Stephens M; Yung CS; Tomlin NA; Vaskuri A; Ryger I; Spidell M; White MG; Jenkins T; Landry J; Sereke T; Lehman JH
    Rev Sci Instrum; 2021 Feb; 92(2):025107. PubMed ID: 33648050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. National Institute of Standards and Technology high-accuracy cryogenic radiometer.
    Gentile TR; Houston JM; Hardis JE; Cromer CL; Parr AC
    Appl Opt; 1996 Mar; 35(7):1056-68. PubMed ID: 21085215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications.
    Theocharous E; Chunnilall CJ; Mole R; Gibbs D; Fox N; Shang N; Howlett G; Jensen B; Taylor R; Reveles JR; Harris OB; Ahmed N
    Opt Express; 2014 Mar; 22(6):7290-307. PubMed ID: 24664077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically calibrated radiometer using a thin film thermopile.
    Boivin LP; Smith TC
    Appl Opt; 1978 Oct; 17(19):3067-75. PubMed ID: 20203927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and evaluation of a pyroelectric detector bonded to vertically aligned multiwalled carbon nanotubes over thin silicon.
    Theocharous E; Theocharous SP; Lehman JH
    Appl Opt; 2013 Nov; 52(33):8054-9. PubMed ID: 24513757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercomparison of the LBIR Absolute Cryogenic Radiometers to the NIST Optical Power Measurement Standard.
    Fedchak JA; Carter AC; Datla R
    J Res Natl Inst Stand Technol; 2006; 111(4):325-34. PubMed ID: 27274936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Two Cryogenic Radiometers at NIST.
    Houston JM; Livigni DJ
    J Res Natl Inst Stand Technol; 2001; 106(4):641-7. PubMed ID: 27500040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical absorptance measurement of an individual multiwall carbon nanotube using a T type thermal probe method.
    Li QY; Liu JH; Wang HD; Zhang X; Takahashi K
    Rev Sci Instrum; 2013 Oct; 84(10):104905. PubMed ID: 24182149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized Electrical Substitution Methods and Detectors for Absolute Optical Power Measurements.
    Woods SI; Neira JE; Proctor JE; Rice JP; Tomlin NA; White MG; Stephens MS; Lehman JH
    Metrologia; 2022; 59(4):. PubMed ID: 36733421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature calorimeter for x-ray free-electron lasers.
    Tanaka T; Kato M; Saito N; Tono K; Yabashi M; Ishikawa T
    Rev Sci Instrum; 2015 Sep; 86(9):093104. PubMed ID: 26429426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ACR II: improved absolute cryogenic radiometer for low background infrared calibrations.
    Carter AC; Lorentz SR; Jung TM; Datla RU
    Appl Opt; 2005 Feb; 44(6):871-5. PubMed ID: 15751676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer.
    Gentile TR; Houston JM; Cromer CL
    Appl Opt; 1996 Aug; 35(22):4392-403. PubMed ID: 21102852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber.
    Im JH; Choi SY; Rotermund F; Yeom DI
    Opt Express; 2010 Oct; 18(21):22141-6. PubMed ID: 20941115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array.
    Yang ZP; Hsieh ML; Bur JA; Ci L; Hanssen LM; Wilthan B; Ajayan PM; Lin SY
    Appl Opt; 2011 May; 50(13):1850-5. PubMed ID: 21532663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.