These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 23454970)

  • 1. Nonlinear behavior of vibrating molecules on suspended graphene waveguides.
    Banerjee A; Grebel H
    Opt Lett; 2013 Jan; 38(2):226-8. PubMed ID: 23454970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-based plasmonic waveguides for photonic integrated circuits.
    Kim JT; Choi SY
    Opt Express; 2011 Nov; 19(24):24557-62. PubMed ID: 22109483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene.
    Heeg S; Fernandez-Garcia R; Oikonomou A; Schedin F; Narula R; Maier SA; Vijayaraghavan A; Reich S
    Nano Lett; 2013 Jan; 13(1):301-8. PubMed ID: 23215014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopy with graphenated anodized aluminum oxide substrates.
    Banerjee A; Li RQ; Grebel H
    Nanotechnology; 2009 Jul; 20(29):295502. PubMed ID: 19567957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering.
    Huh S; Park J; Kim YS; Kim KS; Hong BH; Nam JM
    ACS Nano; 2011 Dec; 5(12):9799-806. PubMed ID: 22070659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications.
    Rukhlenko ID; Premaratne M; Agrawal GP
    Opt Express; 2011 Jan; 19(1):206-17. PubMed ID: 21263558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized wavelength conversion in silicon waveguides based on "off-Raman-resonance" operation: extending the phase mismatch formalism.
    Lefevre Y; Vermeulen N; Debaes C; Thienpont H
    Opt Express; 2011 Sep; 19(20):18810-26. PubMed ID: 21996824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency shift in graphene-enhanced Raman signal of molecules.
    Yaghobian F; Korn T; Schüller C
    Chemphyschem; 2012 Dec; 13(18):4271-5. PubMed ID: 23132764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene.
    Xu H; Xie L; Zhang H; Zhang J
    ACS Nano; 2011 Jul; 5(7):5338-44. PubMed ID: 21678950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media.
    Zhong ZJ; Xu Y; Lan S; Dai QF; Wu LJ
    Opt Express; 2010 Jan; 18(1):79-86. PubMed ID: 20173825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman and fluorescent scattering by molecules embedded in spheres with radii up to several multiples of the wavelength.
    Kerker M; Druger SD
    Appl Opt; 1979 Apr; 18(8):1172-9. PubMed ID: 20208904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication: transfer of more than half the population to a selected rovibrational state of H2 by Stark-induced adiabatic Raman passage.
    Mukherjee N; Dong W; Harrison JA; Zare RN
    J Chem Phys; 2013 Feb; 138(5):051101. PubMed ID: 23406090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing charged impurities in suspended graphene using Raman spectroscopy.
    Ni ZH; Yu T; Luo ZQ; Wang YY; Liu L; Wong CP; Miao J; Huang W; Shen ZX
    ACS Nano; 2009 Mar; 3(3):569-74. PubMed ID: 19256543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal.
    Kwon MS; Shin JS; Shin SY; Lee WG
    Opt Express; 2012 Sep; 20(20):21875-87. PubMed ID: 23037337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate.
    Chu Y; Zhu W; Wang D; Crozier KB
    Opt Express; 2011 Oct; 19(21):20054-68. PubMed ID: 21997016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
    Saha A; Palmal S; Jana NR
    Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).
    Cong C; Yu T; Saito R; Dresselhaus GF; Dresselhaus MS
    ACS Nano; 2011 Mar; 5(3):1600-5. PubMed ID: 21344883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bends and splitters in graphene nanoribbon waveguides.
    Zhu X; Yan W; Mortensen NA; Xiao S
    Opt Express; 2013 Feb; 21(3):3486-91. PubMed ID: 23481806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide: saturation and Stark effects.
    Chai N; Lucht RP; Kulatilaka WD; Roy S; Gord JR
    J Chem Phys; 2010 Aug; 133(8):084310. PubMed ID: 20815572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.