BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23455095)

  • 1. Dispersion management in two-photon microscopy by using diffractive optical elements.
    Pérez-Vizcaíno J; Mendoza-Yero O; Mínguez-Vega G; Martínez-Cuenca R; Andrés P; Lancis J
    Opt Lett; 2013 Feb; 38(4):440-2. PubMed ID: 23455095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multibeam second-harmonic generation by spatiotemporal shaping of femtosecond pulses.
    Martínez-Cuenca R; Mendoza-Yero O; Alonso B; Sola ÍJ; Mínguez-Vega G; Lancis J
    Opt Lett; 2012 Mar; 37(5):957-9. PubMed ID: 22378451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning.
    Cheng LC; Chang CY; Lin CY; Cho KC; Yen WC; Chang NS; Xu C; Dong CY; Chen SJ
    Opt Express; 2012 Apr; 20(8):8939-48. PubMed ID: 22513605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acousto-optic modulator system for femtosecond laser pulses.
    Zeng S; Bi K; Xue S; Liu Y; Lv X; Luo Q
    Rev Sci Instrum; 2007 Jan; 78(1):015103. PubMed ID: 17503942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal enhancement in multiphoton TIRF microscopy by shaping of broadband femtosecond pulses.
    Lane RS; Macpherson AN; Magennis SW
    Opt Express; 2012 Nov; 20(23):25948-59. PubMed ID: 23187410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin and effect of high-order dispersion in ultrashort pulse multiphoton microscopy in the 10 fs regime.
    Wang W; Liu Y; Xi P; Ren Q
    Appl Opt; 2010 Dec; 49(35):6703-9. PubMed ID: 21151226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.
    Sun B; Salter PS; Booth MJ
    Opt Express; 2015 Jul; 23(15):19348-57. PubMed ID: 26367595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-beam homodyne SPIDER for multiphoton microscopy.
    Sung J; Chen BC; Lim SH
    Opt Lett; 2008 Jul; 33(13):1404-6. PubMed ID: 18594646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond the 1/Tp limit: two-photon-excited fluorescence using pulses as short as sub-10-fs.
    Pang S; Yeh AT; Wang C; Meissner KE
    J Biomed Opt; 2009; 14(5):054041. PubMed ID: 19895142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.
    Di Fabrizio E; Cojoc D; Emiliani V; Cabrini S; Coppey-Moisan M; Ferrari E; Garbin V; Altissimo M
    Microsc Res Tech; 2004 Nov; 65(4-5):252-62. PubMed ID: 15630683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon fluorescence isotropic-single-objective microscopy.
    Le Moal E; Mudry E; Chaumet PC; Ferrand P; Sentenac A
    Opt Lett; 2012 Jan; 37(1):85-7. PubMed ID: 22212799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blind frequency-resolved optical-gating pulse characterization for quantitative differential multiphoton microscopy.
    Field JJ; Durfee CG; Squier JA
    Opt Lett; 2010 Oct; 35(20):3369-71. PubMed ID: 20967069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses.
    Pillai RS; Boudoux C; Labroille G; Olivier N; Veilleux I; Farge E; Joffre M; Beaurepaire E
    Opt Express; 2009 Jul; 17(15):12741-52. PubMed ID: 19654680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses.
    Torres-Peiró S; González-Ausejo J; Mendoza-Yero O; Mínguez-Vega G; Andrés P; Lancis J
    Opt Express; 2013 Dec; 21(26):31830-6. PubMed ID: 24514778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extension of imaging depth in two-photon fluorescence microscopy using a long-wavelength high-pulse-energy femtosecond laser source.
    Wang C; Qiao L; He F; Cheng Y; Xu Z
    J Microsc; 2011 Aug; 243(2):179-83. PubMed ID: 21388374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a doubly weighted Gerchberg-Saxton algorithm for use in multibeam imaging applications.
    Poland SP; Krstajić N; Knight RD; Henderson RK; Ameer-Beg SM
    Opt Lett; 2014 Apr; 39(8):2431-4. PubMed ID: 24979011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring two-photon microscopy ultrafast laser pulse duration at the sample plane using time-correlated single-photon counting.
    Kim Y; Vogel SS
    J Biomed Opt; 2020 Jan; 25(1):1-9. PubMed ID: 31994362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy.
    Eggeling C; Volkmer A; Seidel CA
    Chemphyschem; 2005 May; 6(5):791-804. PubMed ID: 15884061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon microscopy with diffractive optical elements and spatial light modulators.
    Watson BO; Nikolenko V; Araya R; Peterka DS; Woodruff A; Yuste R
    Front Neurosci; 2010; 4():. PubMed ID: 20859526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination.
    Milkie DE; Betzig E; Ji N
    Opt Lett; 2011 Nov; 36(21):4206-8. PubMed ID: 22048366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.