These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 2345512)
21. Detection of lactate with a hadamard slice selected, selective multiple quantum coherence, chemical shift imaging sequence (HDMD-SelMQC-CSI) on a clinical MRI scanner: Application to tumors and muscle ischemia. Mellon EA; Lee SC; Pickup S; Kim S; Goldstein SC; Floyd TF; Poptani H; Delikatny EJ; Reddy R; Glickson JD Magn Reson Med; 2009 Dec; 62(6):1404-13. PubMed ID: 19785016 [TBL] [Abstract][Full Text] [Related]
22. In-phase simultaneous spectral editing of lactate and alanine with suppression of J-coupled lipids by the modified selective multiple quantum coherence sequences. Lee SC; Arias-Mendoza F; Chawla S; Nath K; Glickson JD Magn Reson Imaging; 2022 Dec; 94():127-143. PubMed ID: 36089181 [No Abstract] [Full Text] [Related]
23. On the use of double-quantum coherence from an AX3 system (protons in lactate) for spectral editing. Nosel W; Trimble LA; Shen JF; Allen PS Magn Reson Med; 1989 Sep; 11(3):398-404. PubMed ID: 2550720 [TBL] [Abstract][Full Text] [Related]
24. Measurement of lactate in acutely ischemic rat kidneys using magnetic resonance spectroscopy. Lazeyras F; Terrier F; Aue WP; Frey FJ; Howarth N Invest Radiol; 1994 Jan; 29(1):24-30. PubMed ID: 8144333 [TBL] [Abstract][Full Text] [Related]
25. Analysis of human aqueous humour by high resolution 1H NMR spectroscopy. Brown JC; Sadler PJ; Spalton DJ; Juul SM; Macleod AF; Sönksen PH Exp Eye Res; 1986 Apr; 42(4):357-62. PubMed ID: 3709702 [TBL] [Abstract][Full Text] [Related]
26. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Marion D; Driscoll PC; Kay LE; Wingfield PT; Bax A; Gronenborn AM; Clore GM Biochemistry; 1989 Jul; 28(15):6150-6. PubMed ID: 2675964 [TBL] [Abstract][Full Text] [Related]
27. Assignment of resonance in the 1H spectrum of rat brain by two-dimensional shift correlated and J-resolved NMR spectroscopy. Behar KL; Ogino T Magn Reson Med; 1991 Feb; 17(2):285-303. PubMed ID: 1676483 [TBL] [Abstract][Full Text] [Related]
28. Investigation of the 1H NMR visibility of lactate in different rat and human brain cells. Kotitschke K; Schnackerz KD; Dringen R; Bogdahn U; Haase A; von Kienlin M NMR Biomed; 1994 Dec; 7(8):349-55. PubMed ID: 7742202 [TBL] [Abstract][Full Text] [Related]
29. Resolution enhanced NMR spectroscopy in biological systems via magnetic susceptibility matched sample immersion chambers. Balloon D; Mahmood U; Jakubowski A; Koutcher JA Magn Reson Med; 1993 Dec; 30(6):754-8. PubMed ID: 8139459 [TBL] [Abstract][Full Text] [Related]
30. Determination of absolute phosphate metabolite concentrations in RIF-1 tumors in vivo by 31P-1H-2H NMR spectroscopy using water as an internal intensity reference. Shungu DC; Bhujwalla ZM; Li SJ; Rose LM; Wehrle JP; Glickson JD Magn Reson Med; 1992 Nov; 28(1):105-21. PubMed ID: 1435214 [TBL] [Abstract][Full Text] [Related]
31. Lactic acid and protein interactions: implications for the NMR visibility of lactate in biological systems. Chatham JC; Forder JR Biochim Biophys Acta; 1999 Jan; 1426(1):177-84. PubMed ID: 9878726 [TBL] [Abstract][Full Text] [Related]
32. Echo acquisition during frequency-selective pulse trains for proton spectroscopy of metabolites in vivo. Meyer RA Magn Reson Med; 1987 Mar; 4(3):297-301. PubMed ID: 3033425 [TBL] [Abstract][Full Text] [Related]
33. A pitfall associated with lactate detection using stimulated-echo proton spectroscopy. Sotak CH; Alger JR Magn Reson Med; 1991 Feb; 17(2):533-8. PubMed ID: 2062220 [TBL] [Abstract][Full Text] [Related]
34. A fast method for in vivo lactate imaging. Reese T; Norris DG; Leibfritz D NMR Biomed; 1995 Aug; 8(5):225-31. PubMed ID: 8664108 [TBL] [Abstract][Full Text] [Related]
35. Quantitative combined phosphorus and proton PRESS of the brains of newborn human infants. Cady EB Magn Reson Med; 1995 Apr; 33(4):557-63. PubMed ID: 7776888 [TBL] [Abstract][Full Text] [Related]
36. A localized in vivo detection method for lactate using zero quantum coherence techniques. van Dijk JE; Bosman DK; Chamuleau RA; Bovee WM Magn Reson Med; 1991 Dec; 22(2):493-8. PubMed ID: 1812382 [TBL] [Abstract][Full Text] [Related]
37. Lactate quantification by proton magnetic resonance spectroscopy using a clinical MRI machine: a basic study. Isobe T; Matsumura A; Anno I; Kawamura H; Shibata Y; Muraishi H; Minami M Australas Radiol; 2007 Aug; 51(4):330-3. PubMed ID: 17635468 [TBL] [Abstract][Full Text] [Related]
38. Refocused double-quantum editing for lactate detection at 7 T. Boer VO; Luijten PR; Klomp DW Magn Reson Med; 2013 Jan; 69(1):1-6. PubMed ID: 22374843 [TBL] [Abstract][Full Text] [Related]
39. Non-invasive measurement of steady-state vitreous lactate concentration. Berkowitz BA; Bansal N; Wilson CA NMR Biomed; 1994 Sep; 7(6):263-8. PubMed ID: 7841022 [TBL] [Abstract][Full Text] [Related]
40. Quantitative estimation of lactate in the brain by 1H NMR. Williams SR; Proctor E; Allen K; Gadian DG; Crockard HA Magn Reson Med; 1988 Aug; 7(4):425-31. PubMed ID: 3173057 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]