These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23455161)

  • 21. Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition.
    Li Q; Niinomi M; Hieda J; Nakai M; Cho K
    Acta Biomater; 2013 Aug; 9(8):8027-35. PubMed ID: 23624220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of the microstructure and mechanical properties during fabrication of mini-tubes from a biomedical β-titanium alloy.
    Zhang Y; Kent D; Wang G; St John D; Dargusch M
    J Mech Behav Biomed Mater; 2015 Feb; 42():207-18. PubMed ID: 25498294
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.
    Fu J; Kim HY; Miyazaki S
    J Mech Behav Biomed Mater; 2017 Jan; 65():716-723. PubMed ID: 27750162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti-26Nb and Ti-20Nb-6Zr (at.%) alloys.
    Sun F; Hao YL; Nowak S; Gloriant T; Laheurte P; Prima F
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1864-72. PubMed ID: 22098885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low modulus Ti-Nb-Hf alloy for biomedical applications.
    González M; Peña J; Gil FJ; Manero JM
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():691-5. PubMed ID: 25063170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Hieda J
    Acta Biomater; 2012 May; 8(5):1990-7. PubMed ID: 22326686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical properties and microstructure of Ti-35.5Nb-5.7Ta beta alloy.
    Bartakova S; Prachar P; Dvorak I; Hruby V; Vanek J; Pospichal M; Svoboda E; Martikan A; Konecna H; Sedlak I
    Bratisl Lek Listy; 2015; 116(2):88-92. PubMed ID: 25665472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties of low modulus beta titanium alloys designed from the electronic approach.
    Laheurte P; Prima F; Eberhardt A; Gloriant T; Wary M; Patoor E
    J Mech Behav Biomed Mater; 2010 Nov; 3(8):565-73. PubMed ID: 20826362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical biocompatibilities of titanium alloys for biomedical applications.
    Niinomi M
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical properties, structural and texture evolution of biocompatible Ti-45Nb alloy processed by severe plastic deformation.
    Panigrahi A; Sulkowski B; Waitz T; Ozaltin K; Chrominski W; Pukenas A; Horky J; Lewandowska M; Skrotzki W; Zehetbauer M
    J Mech Behav Biomed Mater; 2016 Sep; 62():93-105. PubMed ID: 27179768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique.
    Kent D; Wang G; Yu Z; Ma X; Dargusch M
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):405-16. PubMed ID: 21316628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications.
    Xie KY; Wang Y; Zhao Y; Chang L; Wang G; Chen Z; Cao Y; Liao X; Lavernia EJ; Valiev RZ; Sarrafpour B; Zoellner H; Ringer SP
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3530-6. PubMed ID: 23706243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and characterisation of a new superelastic Ti-25Ta-25Nb biomedical alloy.
    Bertrand E; Gloriant T; Gordin DM; Vasilescu E; Drob P; Vasilescu C; Drob SI
    J Mech Behav Biomed Mater; 2010 Nov; 3(8):559-64. PubMed ID: 20826361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.
    Tian Y; Yu Z; Ong CY; Kent D; Wang G
    J Mech Behav Biomed Mater; 2015 May; 45():132-41. PubMed ID: 25706668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influences of recovery and recrystallization on the superelastic behavior of a β titanium alloy made by suction casting.
    Zhang DC; Lin JG; Wen C
    J Mater Chem B; 2014 Sep; 2(36):5972-5981. PubMed ID: 32261849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tailoring deformation and superelastic behaviors of beta-type Ti-Nb-Mn-Sn alloys.
    Jawed SF; Liu YJ; Wang JC; Rabadia CD; Wang LQ; Li YH; Zhang XH; Zhang LC
    J Mech Behav Biomed Mater; 2020 Oct; 110():103867. PubMed ID: 32957184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Miyamoto G; Furuhara T
    Acta Biomater; 2011 Aug; 7(8):3230-6. PubMed ID: 21569873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ferrous polycrystalline shape-memory alloy showing huge superelasticity.
    Tanaka Y; Himuro Y; Kainuma R; Sutou Y; Omori T; Ishida K
    Science; 2010 Mar; 327(5972):1488-90. PubMed ID: 20299589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys.
    Ning C; Ding D; Dai K; Zhai W; Chen L
    Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.