BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23455172)

  • 1. Controlling dynamic mechanical properties and degradation of composites for bone regeneration by means of filler content.
    Barbieri D; de Bruijn JD; Luo X; Farè S; Grijpma DW; Yuan H
    J Mech Behav Biomed Mater; 2013 Apr; 20():162-72. PubMed ID: 23455172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of polymer molecular weight in osteoinductive composites for bone tissue regeneration.
    Barbieri D; Yuan H; Luo X; Farè S; Grijpma DW; de Bruijn JD
    Acta Biomater; 2013 Dec; 9(12):9401-13. PubMed ID: 23917043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelatin-apatite bone mimetic co-precipitates incorporated within biopolymer matrix to improve mechanical and biological properties useful for hard tissue repair.
    Won JE; El-Fiqi A; Jegal SH; Han CM; Lee EJ; Knowles JC; Kim HW
    J Biomater Appl; 2014 Apr; 28(8):1213-25. PubMed ID: 23985536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties and apatite forming ability of TiO2 nanoparticles/high density polyethylene composite: Effect of filler content.
    Hashimoto M; Takadama H; Mizuno M; Kokubo T
    J Mater Sci Mater Med; 2007 Apr; 18(4):661-8. PubMed ID: 17546429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone.
    Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R
    Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of electrospun poly(lactic acid)-based hybrids containing siloxane-doped vaterite particles for bone regeneration.
    Fujikura K; Obata A; Lin S; Jones JR; Law RV; Kasuga T
    J Biomater Sci Polym Ed; 2012; 23(10):1369-80. PubMed ID: 21762549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of biodegradable poly(D,L-lactide) and surface-modified bioactive glass composites as bone repair materials.
    Zhang du J; Zhang LF; Xiong ZC; Bai W; Xiong CD
    J Mater Sci Mater Med; 2009 Oct; 20(10):1971-8. PubMed ID: 19449200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size.
    Juhasz JA; Best SM; Brooks R; Kawashita M; Miyata N; Kokubo T; Nakamura T; Bonfield W
    Biomaterials; 2004 Mar; 25(6):949-55. PubMed ID: 14615158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Mg content on the thermal stability and mechanical behaviour of PLLA/Mg composites processed by hot extrusion.
    Cifuentes SC; Lieblich M; López FA; Benavente R; González-Carrasco JL
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():18-25. PubMed ID: 28024575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of PLGA reinforcement methods on the mechanical property of carbonate apatite foam.
    Munar GM; Munar ML; Tsuru K; Ishikawa K
    Biomed Mater Eng; 2014; 24(5):1817-25. PubMed ID: 25201395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical behaviour of degradable phosphate glass fibres and composites-a review.
    Colquhoun R; Tanner KE
    Biomed Mater; 2015 Dec; 11(1):014105. PubMed ID: 26694533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanical properties of PLC-bioactive glass scaffolds fabricated via BioExtrusion.
    Fiedler T; Videira AC; Bártolo P; Strauch M; Murch GE; Ferreira JM
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():288-93. PubMed ID: 26354266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering.
    Lei B; Shin KH; Noh DY; Jo IH; Koh YH; Kim HE; Kim SE
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1102-8. PubMed ID: 23827548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physico-mechanical characteristics of commercially available bulk-fill composites.
    Leprince JG; Palin WM; Vanacker J; Sabbagh J; Devaux J; Leloup G
    J Dent; 2014 Aug; 42(8):993-1000. PubMed ID: 24874951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation.
    Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R
    Biomaterials; 2004 Aug; 25(18):4185-94. PubMed ID: 15046908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties and in vitro degradation of self-reinforced radiopaque bioresorbable polylactide fibres.
    Nuutinen JP; Clerc C; Törmälä P
    J Biomater Sci Polym Ed; 2003; 14(7):665-76. PubMed ID: 12903735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.
    Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X
    J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable poly(l-lactide)/calcium phosphate composites with improved properties for orthopedics: Effect of filler and polymer crystallinity.
    Demina VA; Krasheninnikov SV; Buzin AI; Kamyshinsky RA; Sadovskaya NV; Goncharov EN; Zhukova NA; Khvostov MV; Pavlova AV; Tolstikova TG; Sedush NG; Chvalun SN
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110813. PubMed ID: 32409026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradable/non-degradable polymer composites for in-situ tissue engineering small diameter vascular prosthesis application.
    Wang F; Mohammed A; Li C; Ge P; Wang L; King MW
    Biomed Mater Eng; 2014; 24(6):2127-33. PubMed ID: 25226910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.