BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 23455219)

  • 21. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.
    Ben Hassen-Trabelsi A; Kraiem T; Naoui S; Belayouni H
    Waste Manag; 2014 Jan; 34(1):210-8. PubMed ID: 24129214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization.
    Aysu T; Durak H; Güner S; Bengü AŞ; Esim N
    Bioresour Technol; 2016 Apr; 205():7-14. PubMed ID: 26800388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic pyrolysis of oil fractions separated from food waste leachate over nanoporous acid catalysts.
    Kim SS; Heo HS; Kim SG; Ryoo R; Kim J; Jeon JK; Park SH; Park YK
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6167-71. PubMed ID: 22121679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyrolysis of waste plastic crusts of televisions.
    Liu X; Wang Z; Xu D; Guo Q
    Environ Technol; 2012 Sep; 33(16-18):1987-92. PubMed ID: 23240191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Upgrading gas and oil products of the municipal solid waste pyrolysis process by exploiting in-situ interactions between the volatile compounds and the char.
    Wang N; Qian K; Chen D; Zhao H; Yin L
    Waste Manag; 2020 Feb; 102():380-390. PubMed ID: 31733562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pyrolysis and catalytic upgrading of Citrus unshiu peel.
    Kim BS; Kim YM; Jae J; Watanabe C; Kim S; Jung SC; Kim SC; Park YK
    Bioresour Technol; 2015 Oct; 194():312-9. PubMed ID: 26210145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic upgrade for pyrolysis of food waste in a bubbling fluidized-bed reactor.
    Ly HV; Tran QK; Kim SS; Kim J; Choi SS; Oh C
    Environ Pollut; 2021 Apr; 275():116023. PubMed ID: 33582642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conversion of waste polypropylene to liquid fuel using acid-activated kaolin.
    Panda AK; Singh RK
    Waste Manag Res; 2014 Oct; 32(10):997-1004. PubMed ID: 25135440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue).
    Wang P; Zhan S; Yu H; Xue X; Hong N
    Bioresour Technol; 2010 May; 101(9):3236-41. PubMed ID: 20071166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Employing CO
    Lee J; Choi D; Tsang YF; Oh JI; Kwon EE
    Environ Pollut; 2017 May; 224():476-483. PubMed ID: 28256357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of various additives on the pyrolysis characteristics of municipal solid waste.
    Song Q; Zhao HY; Xing WL; Song LH; Yang L; Yang D; Shu X
    Waste Manag; 2018 Aug; 78():621-629. PubMed ID: 32559953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrolysis of municipal plastic wastes: Influence of raw material composition.
    López A; de Marco I; Caballero BM; Laresgoiti MF; Adrados A
    Waste Manag; 2010 Apr; 30(4):620-7. PubMed ID: 19926462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils.
    Pan P; Hu C; Yang W; Li Y; Dong L; Zhu L; Tong D; Qing R; Fan Y
    Bioresour Technol; 2010 Jun; 101(12):4593-9. PubMed ID: 20153636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic pyrolysis of mandarin residue from the mandarin juice processing industry.
    Kim JW; Park SH; Jung J; Jeon JK; Ko CH; Jeong KE; Park YK
    Bioresour Technol; 2013 May; 136():431-6. PubMed ID: 23567713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maximizing olefin production via steam cracking of distilled pyrolysis oils from difficult-to-recycle municipal plastic waste and marine litter.
    Kusenberg M; Faussone GC; Thi HD; Roosen M; Grilc M; Eschenbacher A; De Meester S; Van Geem KM
    Sci Total Environ; 2022 Sep; 838(Pt 2):156092. PubMed ID: 35605869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry.
    Marsman JH; Wildschut J; Evers P; de Koning S; Heeres HJ
    J Chromatogr A; 2008 Apr; 1188(1):17-25. PubMed ID: 18302963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study.
    Zhang B; Zhong Z; Min M; Ding K; Xie Q; Ruan R
    Bioresour Technol; 2015; 189():30-35. PubMed ID: 25864028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor.
    Song Y; Tahmasebi A; Yu J
    Bioresour Technol; 2014 Dec; 174():204-11. PubMed ID: 25463801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE).
    Santella C; Cafiero L; De Angelis D; La Marca F; Tuffi R; Vecchio Ciprioti S
    Waste Manag; 2016 Aug; 54():143-52. PubMed ID: 27184448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.