BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 23455220)

  • 1. Kinetics and mechanisms of hydrogen sulfide adsorption by biochars.
    Shang G; Shen G; Liu L; Chen Q; Xu Z
    Bioresour Technol; 2013 Apr; 133():495-9. PubMed ID: 23455220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of hydrogen sulfide by biochars derived from pyrolysis of different agricultural/forestry wastes.
    Shang G; Li Q; Liu L; Chen P; Huang X
    J Air Waste Manag Assoc; 2016 Jan; 66(1):8-16. PubMed ID: 26447857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness and mechanisms of hydrogen sulfide adsorption by camphor-derived biochar.
    Shang G; Shen G; Wang T; Chen Q
    J Air Waste Manag Assoc; 2012 Aug; 62(8):873-9. PubMed ID: 22916434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and the mass transfer mechanism of hydrogen sulfide removal by biochar derived from rice hull.
    Shang G; Liu L; Chen P; Shen G; Li Q
    J Air Waste Manag Assoc; 2016 May; 66(5):439-45. PubMed ID: 27064906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues.
    Xu RK; Xiao SC; Yuan JH; Zhao AZ
    Bioresour Technol; 2011 Nov; 102(22):10293-8. PubMed ID: 21924897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process.
    Qian L; Chen B
    J Agric Food Chem; 2014 Jan; 62(2):373-80. PubMed ID: 24364719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water.
    Ahmad M; Lee SS; Dou X; Mohan D; Sung JK; Yang JE; Ok YS
    Bioresour Technol; 2012 Aug; 118():536-44. PubMed ID: 22721877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars.
    Rajapaksha AU; Vithanage M; Zhang M; Ahmad M; Mohan D; Chang SX; Ok YS
    Bioresour Technol; 2014 Aug; 166():303-8. PubMed ID: 24926603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge.
    Chen T; Zhang Y; Wang H; Lu W; Zhou Z; Zhang Y; Ren L
    Bioresour Technol; 2014 Jul; 164():47-54. PubMed ID: 24835918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast carbonization using fluidized bed for biochar production from reed black liquor: optimization for H2S removal.
    Yang G; Sun Y; Zhang JP; Wen C
    Environ Technol; 2016 Oct; 37(19):2447-56. PubMed ID: 26936082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles.
    Qian L; Chen B
    Environ Sci Technol; 2013 Aug; 47(15):8759-68. PubMed ID: 23826729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars.
    Claoston N; Samsuri AW; Ahmad Husni MH; Mohd Amran MS
    Waste Manag Res; 2014 Apr; 32(4):331-9. PubMed ID: 24643171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation.
    Srinivasan P; Sarmah AK
    Sci Total Environ; 2015 Jan; 502():471-80. PubMed ID: 25290589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil.
    Uchimiya M; Bannon DI; Wartelle LH
    J Agric Food Chem; 2012 Feb; 60(7):1798-809. PubMed ID: 22280497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars.
    Yang G; Wu L; Xian Q; Shen F; Wu J; Zhang Y
    PLoS One; 2016; 11(5):e0154562. PubMed ID: 27144922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars.
    Mayakaduwa SS; Herath I; Ok YS; Mohan D; Vithanage M
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22755-22763. PubMed ID: 27553000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cadmium adsorption by biochar prepared from pyrolysis of silk waste at different temperatures].
    Ji HY; Wang YY; Lyu HH; Liu YX; Yang RQ; Yang SM
    Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1328-1338. PubMed ID: 29726244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies.
    Sun L; Wan S; Luo W
    Bioresour Technol; 2013 Jul; 140():406-13. PubMed ID: 23714096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis.
    Huff MD; Kumar S; Lee JW
    J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.