These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23455265)

  • 1. Axial potential mapping of optical tweezers for biopolymer stretching: the bead size matters.
    Ahmadi A; Reihani SN
    Opt Lett; 2013 Mar; 38(5):685-7. PubMed ID: 23455265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential mapping of optical tweezers.
    Godazgar T; Shokri R; Reihani SN
    Opt Lett; 2011 Aug; 36(16):3284-6. PubMed ID: 21847235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal axial fluctuations in optical tweezers.
    Ribezzi-Crivellari M; Alemany A; Ritort F
    Opt Lett; 2015 Mar; 40(5):800-3. PubMed ID: 25723436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretching short biopolymers using optical tweezers.
    Sun YL; Luo ZP; An KN
    Biochem Biophys Res Commun; 2001 Aug; 286(4):826-30. PubMed ID: 11520072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretching short sequences of DNA with constant force axial optical tweezers.
    Raghunathan K; Milstein JN; Meiners JC
    J Vis Exp; 2011 Oct; (56):e3405. PubMed ID: 22025209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing bead size reduces errors in force measurements in optical traps.
    Montange RK; Bull MS; Shanblatt ER; Perkins TT
    Opt Express; 2013 Jan; 21(1):39-48. PubMed ID: 23388894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple method to measure and analyze the fluctuations of a small particle in biopolymer solutions.
    Kuroda M; Murayama Y
    Rev Sci Instrum; 2015 Dec; 86(12):125105. PubMed ID: 26724071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution dual-trap optical tweezers with differential detection: minimizing the influence of measurement noise.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip75. PubMed ID: 20147040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic fluctuations lead to broad range of transduced forces in tethered-bead single-molecule experiments.
    Mehraeen S; Spakowitz AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021902. PubMed ID: 23005780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical tweezers directed one-bead one-sequence synthesis of oligonucleotides.
    Wang T; Oehrlein S; Somoza MM; Perez JR; Kershner R; Cerrina F
    Lab Chip; 2011 May; 11(9):1629-37. PubMed ID: 21445444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of probe-laser focal offsets for single-particle tracking.
    Chang AT; Chang YR; Chi S; Hsu L
    Appl Opt; 2012 Aug; 51(23):5643-8. PubMed ID: 22885576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers.
    Schäffer E; Nørrelykke SF; Howard J
    Langmuir; 2007 Mar; 23(7):3654-65. PubMed ID: 17326669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZnO-based hollow microspheres: biopolymer-assisted assemblies from ZnO nanorods.
    Gao S; Zhang H; Wang X; Deng R; Sun D; Zheng G
    J Phys Chem B; 2006 Aug; 110(32):15847-52. PubMed ID: 16898735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization-induced stiffness asymmetry of optical tweezers.
    Madadi E; Samadi A; Cheraghian M; Reihani SN
    Opt Lett; 2012 Sep; 37(17):3519-21. PubMed ID: 22940935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques.
    Tanaka Y; Kawada H; Tsutsui S; Ishikawa M; Kitajima H
    Opt Express; 2009 Dec; 17(26):24102-11. PubMed ID: 20052122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip supercontinuum optical trapping and resonance excitation of microspheres.
    Nitkowski A; Gondarenko A; Lipson M
    Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axial Optical Traps: A New Direction for Optical Tweezers.
    Yehoshua S; Pollari R; Milstein JN
    Biophys J; 2015 Jun; 108(12):2759-66. PubMed ID: 26083913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.