These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2345562)

  • 1. Enhancement of K+ conductance improves in vitro the contraction force of skeletal muscle in hypokalemic periodic paralysis.
    Grafe P; Quasthoff S; Strupp M; Lehmann-Horn F
    Muscle Nerve; 1990 May; 13(5):451-7. PubMed ID: 2345562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries.
    Nielsen-Kudsk JE
    Dan Med Bull; 1996 Dec; 43(5):429-47. PubMed ID: 8960816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperpolarization of denervated skeletal muscle by lemakalim and its antagonism by glybenclamide and tolbutamide.
    Hong SJ; Chang CC
    J Pharmacol Exp Ther; 1991 Nov; 259(2):932-8. PubMed ID: 1941637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-sensitive potassium channels and skeletal muscle function in vitro.
    Weselcouch EO; Sargent C; Wilde MW; Smith MA
    J Pharmacol Exp Ther; 1993 Oct; 267(1):410-6. PubMed ID: 8229769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biophysical and pharmacological characteristics of skeletal muscle ATP-sensitive K+ channels are modified in K+-depleted rat, an animal model of hypokalemic periodic paralysis.
    Tricarico D; Pierno S; Mallamaci R; Brigiani GS; Capriulo R; Santoro G; Camerino DC
    Mol Pharmacol; 1998 Jul; 54(1):197-206. PubMed ID: 9658206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cromakalim (BRL 34915) restores in vitro the membrane potential of depolarized human skeletal muscle fibres.
    Spuler A; Lehmann-Horn F; Grafe P
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Mar; 339(3):327-31. PubMed ID: 2725710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-tension relationships of muscle fibers from patients with periodic paralysis.
    Ruff RL
    Muscle Nerve; 1991 Sep; 14(9):838-44. PubMed ID: 1922178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K+ channel openers suppress myotonic activity of human skeletal muscle in vitro.
    Quasthoff S; Spuler A; Spittelmeister W; Lehmann-Horn F; Grafe P
    Eur J Pharmacol; 1990 Sep; 186(1):125-8. PubMed ID: 2282934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetazolamide opens the muscular KCa2+ channel: a novel mechanism of action that may explain the therapeutic effect of the drug in hypokalemic periodic paralysis.
    Tricarico D; Barbieri M; Camerino DC
    Ann Neurol; 2000 Sep; 48(3):304-12. PubMed ID: 10976636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of K-channel openers on the contractility and electrical activity of antral circular muscle in guinea-pig stomach.
    Kim KW; Kim SJ; Jun JY
    J Smooth Muscle Res; 1993 Oct; 29(5):145. PubMed ID: 8167416
    [No Abstract]   [Full Text] [Related]  

  • 11. Cromakalim does not protect against skeletal muscle fatigue in an anaesthetized rat model of acute hindlimb ischaemia.
    Trezise DJ; Drew GM; Roach AG; Watts IS; Weston AH
    Eur J Pharmacol; 1993 Nov; 250(1):109-16. PubMed ID: 8119308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression patterns of two potassium channel genes in skeletal muscle cells of patients with familial hypokalemic periodic paralysis.
    Kim JB; Lee GM; Kim SJ; Yoon DH; Lee YH
    Neurol India; 2011; 59(4):527-31. PubMed ID: 21891927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo comparison of two K+ channel openers, diazoxide and cromakalim, and their inhibition by glibenclamide.
    Quast U; Cook NS
    J Pharmacol Exp Ther; 1989 Jul; 250(1):261-71. PubMed ID: 2501478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of JTV-506, a new K+ channel activator, on airway smooth muscle contraction and systemic blood pressure.
    Ando T; Kume H; Urata Y; Takagi K
    Clin Exp Allergy; 1997 Jun; 27(6):705-13. PubMed ID: 9208193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypokalemic periodic paralysis: in vitro investigation of muscle fiber membrane parameters.
    Rüdel R; Lehmann-Horn F; Ricker K; Küther G
    Muscle Nerve; 1984 Feb; 7(2):110-20. PubMed ID: 6325904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and energetic effects of cromakalim on guinea pig left ventricular papillary muscle.
    Joseph T; Coirault C; Ducros L; Lecarpentier Y
    J Pharmacol Exp Ther; 1996 Nov; 279(2):464-71. PubMed ID: 8930147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Membrane potentials of a single skeletal muscle cell in hypokalemic periodic muscle paralysis].
    Riecker G; Bolte HD
    Klin Wochenschr; 1966 Jul; 44(14):804-7. PubMed ID: 5994677
    [No Abstract]   [Full Text] [Related]  

  • 18. Loss of Na+ channel inactivation by anemone toxin (ATX II) mimics the myotonic state in hyperkalaemic periodic paralysis.
    Cannon SC; Corey DP
    J Physiol; 1993 Jul; 466():501-20. PubMed ID: 8105077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interictal conduction slowing in muscle fibers in hypokalemic periodic paralysis.
    Troni W; Doriguzzi C; Mongini T
    Neurology; 1983 Nov; 33(11):1522-5. PubMed ID: 6685247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Physiopathology of hypokalemic familial paralysis].
    Kotsias BA
    Medicina (B Aires); 1986; 46(4):461-6. PubMed ID: 3574109
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.