These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 23455620)

  • 1. Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs).
    Wu L; Zhang Z; Ran J; Zhou D; Li C; Xu T
    Phys Chem Chem Phys; 2013 Apr; 15(14):4870-87. PubMed ID: 23455620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly durable proton exchange membranes for low temperature fuel cells.
    Tang H; Pan M; Wang F; Shen PK; Jiang SP
    J Phys Chem B; 2007 Aug; 111(30):8684-90. PubMed ID: 17628100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity.
    Xu K; Chanthad C; Gadinski MR; Hickner MA; Wang Q
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2573-9. PubMed ID: 20356129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Proton Conductive Poly(vinyl acetate)/Nafion® Composite Membrane for Proton Exchange Membrane Fuel Cell Application.
    Kabir MDL; Kim HJ; Lee CJ; Choi SJ
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6536-6540. PubMed ID: 29677829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.
    Miyake J; Taki R; Mochizuki T; Shimizu R; Akiyama R; Uchida M; Miyatake K
    Sci Adv; 2017 Oct; 3(10):eaao0476. PubMed ID: 29075671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.
    Li J; Wang Z; Li J; Pan M; Tang H
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1181-93. PubMed ID: 24749421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes.
    Scofield ME; Liu H; Wong SS
    Chem Soc Rev; 2015 Aug; 44(16):5836-60. PubMed ID: 26119055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton-Conducting Poly-γ-glutamic Acid Nanofiber Embedded Sulfonated Poly(ether sulfone) for Proton Exchange Membranes.
    Wang H; Zhuang X; Wang X; Li C; Li Z; Kang W; Yin Y; Guiver MD; Cheng B
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21865-21873. PubMed ID: 31185563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells.
    Hou H; Di Vona ML; Knauth P
    ChemSusChem; 2011 Nov; 4(11):1526-36. PubMed ID: 22006846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Fluorinated Polymer Composite Proton Exchange Membranes for Fuel Cell Applications - A Review.
    Esmaeili N; Gray EM; Webb CJ
    Chemphyschem; 2019 Aug; 20(16):2016-2053. PubMed ID: 31334917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes.
    Peckham TJ; Holdcroft S
    Adv Mater; 2010 Nov; 22(42):4667-90. PubMed ID: 20848594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal Organic Frameworks Modified Proton Exchange Membranes for Fuel Cells.
    Liu Q; Li Z; Wang D; Li Z; Peng X; Liu C; Zheng P
    Front Chem; 2020; 8():694. PubMed ID: 32850683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton Conductive Channel Optimization in Methanol Resistive Hybrid Hyperbranched Polyamide Proton Exchange Membrane.
    Ma L; Li J; Xiong J; Xu G; Liu Z; Cai W
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30966012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current status and future perspectives of proton exchange membranes for hydrogen fuel cells.
    Jamil A; Rafiq S; Iqbal T; Khan HAA; Khan HM; Azeem B; Mustafa MZ; Hanbazazah AS
    Chemosphere; 2022 Sep; 303(Pt 3):135204. PubMed ID: 35660058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective growth of MoS2 for proton exchange membranes with extremely high selectivity.
    Feng K; Tang B; Wu P
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13042-9. PubMed ID: 24283567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bi-Functional Composting the Sulfonic Acid Based Proton Exchange Membrane for High Temperature Fuel Cell Application.
    Xu G; Zou J; Guo Z; Li J; Ma L; Li Y; Cai W
    Polymers (Basel); 2020 Apr; 12(5):. PubMed ID: 32357433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear magnetic resonance of polymer electrolyte membrane fuel cells.
    Suarez S; Greenbaum S
    Chem Rec; 2010 Dec; 10(6):377-93. PubMed ID: 20648522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anhydrous phosphoric Acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells.
    Zeng J; He B; Lamb K; De Marco R; Shen PK; Jiang SP
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11240-8. PubMed ID: 24125494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review.
    Vinothkannan M; Kim AR; Yoo DJ
    RSC Adv; 2021 May; 11(30):18351-18370. PubMed ID: 35480954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized organic-inorganic nanostructured N-p-carboxy benzyl chitosan-silica-PVA hybrid polyelectrolyte complex as proton exchange membrane for DMFC applications.
    Tripathi BP; Shahi VK
    J Phys Chem B; 2008 Dec; 112(49):15678-90. PubMed ID: 19368033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.