BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23455642)

  • 1. Engineering a 3D vascular network in hydrogel for mimicking a nephron.
    Mu X; Zheng W; Xiao L; Zhang W; Jiang X
    Lab Chip; 2013 Apr; 13(8):1612-8. PubMed ID: 23455642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of nature-inspired microfluidic network for perfusable tissue constructs.
    He J; Mao M; Liu Y; Shao J; Jin Z; Li D
    Adv Healthc Mater; 2013 Aug; 2(8):1108-13. PubMed ID: 23554383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels.
    Lee W; Lee V; Polio S; Keegan P; Lee JH; Fischer K; Park JK; Yoo SS
    Biotechnol Bioeng; 2010 Apr; 105(6):1178-86. PubMed ID: 19953677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microengineered physiological biomimicry: organs-on-chips.
    Huh D; Torisawa YS; Hamilton GA; Kim HJ; Ingber DE
    Lab Chip; 2012 Jun; 12(12):2156-64. PubMed ID: 22555377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning.
    Occhetta P; Sadr N; Piraino F; Redaelli A; Moretti M; Rasponi M
    Biofabrication; 2013 Sep; 5(3):035002. PubMed ID: 23685332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels.
    Kageyama T; Kakegawa T; Osaki T; Enomoto J; Ito T; Nittami T; Fukuda J
    Biofabrication; 2014 Jun; 6(2):025006. PubMed ID: 24658207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices.
    Gillette BM; Jensen JA; Tang B; Yang GJ; Bazargan-Lari A; Zhong M; Sia SK
    Nat Mater; 2008 Aug; 7(8):636-40. PubMed ID: 18511938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel-fibre composites with independent control over cell adhesion to gel and fibres as an integral approach towards a biomimetic artificial ECM.
    Schulte VA; Hahn K; Dhanasingh A; Heffels KH; Groll J
    Biofabrication; 2014 Jun; 6(2):024106. PubMed ID: 24695400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP).
    Wu PK; Ringeisen BR
    Biofabrication; 2010 Mar; 2(1):014111. PubMed ID: 20811126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
    Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q
    Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired microstructures in collagen type I hydrogel.
    Hosseini Y; Verbridge SS; Agah M
    J Biomed Mater Res A; 2015 Jun; 103(6):2193-7. PubMed ID: 25346472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrochanneled bioactive ceramic scaffolds in combination with collagen hydrogel: a new tool for bone tissue engineering.
    Yu HS; Jin GZ; Won JE; Wall I; Kim HW
    J Biomed Mater Res A; 2012 Sep; 100(9):2431-40. PubMed ID: 22566478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic spinning of hydrogel fibers.
    Hu M; Deng R; Schumacher KM; Kurisawa M; Ye H; Purnamawati K; Ying JY
    Biomaterials; 2010 Feb; 31(5):863-9. PubMed ID: 19878994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology.
    Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K
    J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable cell/hydrogel microspheres induce the formation of fat lobule-like microtissues and vascularized adipose tissue regeneration.
    Yao R; Zhang R; Lin F; Luan J
    Biofabrication; 2012 Dec; 4(4):045003. PubMed ID: 23075755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and assessment of a microfluidic network system for oxygen transport in engineered tissue.
    Kang TY; Hong JM; Jung JW; Yoo JJ; Cho DW
    Langmuir; 2013 Jan; 29(2):701-9. PubMed ID: 23234496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of vascular network location in millimeter-sized 3D-tissues by micrometer-sized collagen coated cells.
    Liu CY; Matsusaki M; Akashi M
    Biochem Biophys Res Commun; 2016 Mar; 472(1):131-6. PubMed ID: 26920051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.