BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23455642)

  • 21. Biomatrices and biomaterials for future developments of bioprinting and biofabrication.
    Nakamura M; Iwanaga S; Henmi C; Arai K; Nishiyama Y
    Biofabrication; 2010 Mar; 2(1):014110. PubMed ID: 20811125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A cell-laden microfluidic hydrogel.
    Ling Y; Rubin J; Deng Y; Huang C; Demirci U; Karp JM; Khademhosseini A
    Lab Chip; 2007 Jun; 7(6):756-62. PubMed ID: 17538718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A hydrogel-based microfluidic device for the studies of directed cell migration.
    Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M
    Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP.
    Pirlo RK; Wu P; Liu J; Ringeisen B
    Biotechnol Bioeng; 2012 Jan; 109(1):262-73. PubMed ID: 21830203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Culture of chondrocytes in fibroin-hydrogel sponge.
    Aoki H; Tomita N; Morita Y; Hattori K; Harada Y; Sonobe M; Wakitani S; Tamada Y
    Biomed Mater Eng; 2003; 13(4):309-16. PubMed ID: 14646046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue.
    Ho CT; Lin RZ; Chen RJ; Chin CK; Gong SE; Chang HY; Peng HL; Hsu L; Yew TR; Chang SF; Liu CH
    Lab Chip; 2013 Sep; 13(18):3578-87. PubMed ID: 23743812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The growth of a vascular network inside a collagen-citric acid derivative hydrogel in rats.
    Takayama T; Taguchi T; Koyama H; Sakari M; Kamimura W; Takato T; Miyata T; Nagawa H
    Biomaterials; 2009 Jul; 30(21):3580-7. PubMed ID: 19362365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic hydrogels for tissue engineering.
    Huang GY; Zhou LH; Zhang QC; Chen YM; Sun W; Xu F; Lu TJ
    Biofabrication; 2011 Mar; 3(1):012001. PubMed ID: 21372342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell microarrays based on hydrogel microstructures for the application to cell-based biosensor.
    Koh WG
    Methods Mol Biol; 2011; 671():133-45. PubMed ID: 20967627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel.
    Nguyen LH; Kudva AK; Saxena NS; Roy K
    Biomaterials; 2011 Oct; 32(29):6946-52. PubMed ID: 21723599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of the formation of vascular networks in 3D tissue engineered constructs.
    Muraoka M; Shimizu T; Itoga K; Takahashi H; Okano T
    Biomaterials; 2013 Jan; 34(3):696-703. PubMed ID: 23102990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogel-coated textile scaffolds as three-dimensional growth support for human umbilical vein endothelial cells (HUVECs): possibilities as coculture system in liver tissue engineering.
    Risbud MV; Karamuk E; Moser R; Mayer J
    Cell Transplant; 2002; 11(4):369-77. PubMed ID: 12162377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device.
    GarcĂ­a S; Sunyer R; Olivares A; Noailly J; Atencia J; Trepat X
    Lab Chip; 2015 Jun; 15(12):2606-14. PubMed ID: 25977997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach.
    Matsusaki M; Yoshida H; Akashi M
    Biomaterials; 2007 Jun; 28(17):2729-37. PubMed ID: 17336376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering bioartificial tracheal tissue using hybrid fibroblast-mesenchymal stem cell cultures in collagen hydrogels.
    Naito H; Tojo T; Kimura M; Dohi Y; Zimmermann WH; Eschenhagen T; Taniguchi S
    Interact Cardiovasc Thorac Surg; 2011 Feb; 12(2):156-61. PubMed ID: 21098511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of functional human vascular network.
    Takebe T; Koike N; Sekine K; Enomura M; Chiba Y; Ueno Y; Zheng YW; Taniguchi H
    Transplant Proc; 2012 May; 44(4):1130-3. PubMed ID: 22564644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic engineered high cell density three-dimensional neural cultures.
    Cullen DK; Vukasinovic J; Glezer A; Laplaca MC
    J Neural Eng; 2007 Jun; 4(2):159-72. PubMed ID: 17409489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug.
    Dhopeshwarkar R; Sun L; Crooks RM
    Lab Chip; 2005 Oct; 5(10):1148-54. PubMed ID: 16175272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Skin tissue generation by laser cell printing.
    Koch L; Deiwick A; Schlie S; Michael S; Gruene M; Coger V; Zychlinski D; Schambach A; Reimers K; Vogt PM; Chichkov B
    Biotechnol Bioeng; 2012 Jul; 109(7):1855-63. PubMed ID: 22328297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.