BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23455732)

  • 1. Optimized templates for bottom-up growth of high-performance integrated biomolecular detectors.
    Lam B; Holmes RD; Das J; Poudineh M; Sage A; Sargent EH; Kelley SO
    Lab Chip; 2013 Jul; 13(13):2569-75. PubMed ID: 23455732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ electrokinetic enhancement for self-assembled-monolayer-based electrochemical biosensing.
    Sin ML; Liu T; Pyne JD; Gau V; Liao JC; Wong PK
    Anal Chem; 2012 Mar; 84(6):2702-7. PubMed ID: 22397486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection.
    Guo Y; Su S; Wei X; Zhong Y; Su Y; Huang Q; Fan C; He Y
    Nanotechnology; 2013 Nov; 24(44):444012. PubMed ID: 24113314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chip-based nanostructured sensors enable accurate identification and classification of circulating tumor cells in prostate cancer patient blood samples.
    Ivanov I; Stojcic J; Stanimirovic A; Sargent E; Nam RK; Kelley SO
    Anal Chem; 2013 Jan; 85(1):398-403. PubMed ID: 23167816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Background current reduction and biobarcode amplification for label-free, highly sensitive electrochemical detection of pathogenic DNA.
    Xu J; Jiang B; Su J; Xiang Y; Yuan R; Chai Y
    Chem Commun (Camb); 2012 Apr; 48(27):3309-11. PubMed ID: 22362204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Status of biomolecular recognition using electrochemical techniques.
    Sadik OA; Aluoch AO; Zhou A
    Biosens Bioelectron; 2009 May; 24(9):2749-65. PubMed ID: 19054662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-scale fabrication of patterned carbon nanofiber nanoelectrode arrays: a route for development of multiplexed, ultrasensitive disposable biosensors.
    Arumugam PU; Chen H; Siddiqui S; Weinrich JA; Jejelowo A; Li J; Meyyappan M
    Biosens Bioelectron; 2009 May; 24(9):2818-24. PubMed ID: 19303281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis.
    Mohan R; Mach KE; Bercovici M; Pan Y; Dhulipala L; Wong PK; Liao JC
    PLoS One; 2011; 6(10):e26846. PubMed ID: 22066011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical biosensors at the nanoscale.
    Wei D; Bailey MJ; Andrew P; Ryhänen T
    Lab Chip; 2009 Aug; 9(15):2123-31. PubMed ID: 19606287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution-based circuits enable rapid and multiplexed pathogen detection.
    Lam B; Das J; Holmes RD; Live L; Sage A; Sargent EH; Kelley SO
    Nat Commun; 2013; 4():2001. PubMed ID: 23756447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximal bacterial lysis and detection in nanoliter wells using electrochemistry.
    Besant JD; Das J; Sargent EH; Kelley SO
    ACS Nano; 2013 Sep; 7(9):8183-9. PubMed ID: 23930741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical biosensors.
    Ronkainen NJ; Halsall HB; Heineman WR
    Chem Soc Rev; 2010 May; 39(5):1747-63. PubMed ID: 20419217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical sensors and biosensors based on nanomaterials and nanostructures.
    Zhu C; Yang G; Li H; Du D; Lin Y
    Anal Chem; 2015 Jan; 87(1):230-49. PubMed ID: 25354297
    [No Abstract]   [Full Text] [Related]  

  • 15. Real-time monitoring of strand-displacement DNA amplification by a contactless electrochemical microsystem using interdigitated electrodes.
    Fang X; Zhang H; Zhang F; Jing F; Mao H; Jin Q; Zhao J
    Lab Chip; 2012 Sep; 12(17):3190-6. PubMed ID: 22773155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific and targeted detection of viable Escherichia coli O157:H7 using a sensitive and reusable impedance biosensor with dose and time response studies.
    Dweik M; Stringer RC; Dastider SG; Wu Y; Almasri M; Barizuddin S
    Talanta; 2012 May; 94():84-9. PubMed ID: 22608418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapidly prototyped multi-scale electrodes to minimize the voltage requirements for bacterial cell lysis.
    Gabardo CM; Kwong AM; Soleymani L
    Analyst; 2015 Mar; 140(5):1599-608. PubMed ID: 25597363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrocatalytic mRNA detection using PNA-nanowire sensors.
    Fang Z; Kelley SO
    Anal Chem; 2009 Jan; 81(2):612-7. PubMed ID: 19086897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive visible light activated photoelectrochemical biosensing of organophosphate pesticide using biofunctional crossed bismuth oxyiodide flake arrays.
    Gong J; Wang X; Li X; Wang K
    Biosens Bioelectron; 2012; 38(1):43-9. PubMed ID: 22647535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New directions in screen printed electroanalytical sensors: an overview of recent developments.
    Metters JP; Kadara RO; Banks CE
    Analyst; 2011 Mar; 136(6):1067-76. PubMed ID: 21283890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.