BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23455961)

  • 1. Depth-resolved dual-beamlet vibrometry based on Fourier domain low coherence interferometry.
    Subhash HM; Choudhury N; Chen F; Wang RK; Jacques SL; Nuttall AL
    J Biomed Opt; 2013 Mar; 18(3):036003. PubMed ID: 23455961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-field optical coherence tomography using immersion Mirau interference microscope.
    Lu SH; Chang CJ; Kao CF
    Appl Opt; 2013 Jun; 52(18):4400-3. PubMed ID: 23842185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-step method for fiber-optic probe-based full-range spectral domain optical coherence tomography.
    Min EJ; Shin JG; Lee JH; Yasuno Y; Lee BH
    Appl Opt; 2013 Jul; 52(21):5143-51. PubMed ID: 23872759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy.
    Pyhtila JW; Boyer JD; Chalut KJ; Wax A
    Opt Lett; 2006 Mar; 31(6):772-4. PubMed ID: 16544619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3x3 Mach-Zehnder interferometer with unbalanced differential detection for full-range swept-source optical coherence tomography.
    Mao Y; Sherif S; Flueraru C; Chang S
    Appl Opt; 2008 Apr; 47(12):2004-10. PubMed ID: 18425172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy.
    Davis BJ; Ralston TS; Marks DL; Boppart SA; Carney PS
    Opt Lett; 2007 Jun; 32(11):1441-3. PubMed ID: 17546148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low coherence interferometry of the cochlear partition.
    Choudhury N; Song G; Chen F; Matthews S; Tschinkel T; Zheng J; Jacques SL; Nuttall AL
    Hear Res; 2006 Oct; 220(1-2):1-9. PubMed ID: 16945496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study.
    Wang RK; Nuttall AL
    J Biomed Opt; 2010; 15(5):056005. PubMed ID: 21054099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography.
    Götzinger E; Pircher M; Sticker M; Fercher AF; Hitzenberger CK
    J Biomed Opt; 2004; 9(1):94-102. PubMed ID: 14715060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of dye diffusion in scattering tissue phantoms using dual-wavelength low-coherence interferometry.
    Storen T; Royset A; Svaasand LO; Lindmo T
    J Biomed Opt; 2006; 11(1):014017. PubMed ID: 16526894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer.
    Hu Z; Rollins AM
    Opt Lett; 2007 Dec; 32(24):3525-7. PubMed ID: 18087530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal competition in optical coherence tomography and its relevance for cochlear vibrometry.
    Lin NC; Hendon CP; Olson ES
    J Acoust Soc Am; 2017 Jan; 141(1):395. PubMed ID: 28147569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier domain--optical coherence tomography based on a quadrature Mach-Zehnder interferometer.
    Flueraru C; Mao Y; Sherif S; Chang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2643-6. PubMed ID: 18002538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer.
    Lee KS; Akcay AC; Delemos T; Clarkson E; Rolland JP
    Appl Opt; 2005 Jul; 44(19):4009-22. PubMed ID: 16004048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple and robust calibration procedure for k-linearization and dispersion compensation in optical coherence tomography.
    Attendu X; Ruis RM; Boudoux C; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2019 May; 24(5):1-11. PubMed ID: 31087833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry.
    Iwai H; Fang-Yen C; Popescu G; Wax A; Badizadegan K; Dasari RR; Feld MS
    Opt Lett; 2004 Oct; 29(20):2399-401. PubMed ID: 15532280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography.
    Ralston TS; Adie SG; Marks DL; Boppart SA; Carney PS
    Opt Lett; 2010 May; 35(10):1683-5. PubMed ID: 20479849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved measurements from speckle interferometry.
    Tualle JM; Nghiêm HL; Schäfauer C; Berthaud P; Tinet E; Ettori D; Avrillier S
    Opt Lett; 2005 Jan; 30(1):50-2. PubMed ID: 15648634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Needle-based refractive index measurement using low-coherence interferometry.
    Zysk AM; Adie SG; Armstrong JJ; Leigh MS; Paduch A; Sampson DD; Nguyen FT; Boppart SA
    Opt Lett; 2007 Feb; 32(4):385-7. PubMed ID: 17356661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-D coherence holography using a modified Sagnac radial shearing interferometer with geometric phase shift.
    Naik DN; Ezawa T; Miyamoto Y; Takeda M
    Opt Express; 2009 Jun; 17(13):10633-41. PubMed ID: 19550459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.