These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23455996)

  • 1. Modeling highly focused laser beam in optical tweezers with the vector Gaussian beam in the T-matrix method.
    Bareil PB; Sheng Y
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jan; 30(1):1-6. PubMed ID: 23455996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact analytical expansion of an off-axis Gaussian laser beam using the translation theorems for the vector spherical harmonics.
    Boyde L; Chalut KJ; Guck J
    Appl Opt; 2011 Mar; 50(7):1023-33. PubMed ID: 21364726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study.
    Trojek J; Chvátal L; Zemánek P
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1224-36. PubMed ID: 22751387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration.
    Lock JA
    Appl Opt; 2004 Apr; 43(12):2532-44. PubMed ID: 15119623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.
    Chang CB; Huang WX; Lee KH; Sung HJ
    Opt Express; 2012 Oct; 20(21):24068-84. PubMed ID: 23188374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations.
    Chen CG; Konkola PT; Ferrera J; Heilmann RK; Schattenburg ML
    J Opt Soc Am A Opt Image Sci Vis; 2002 Feb; 19(2):404-12. PubMed ID: 11822605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method.
    Sung SY; Lee YG
    Opt Express; 2008 Mar; 16(5):3463-73. PubMed ID: 18542438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffraction of an optical pulse as an expansion in ultrashort orthogonal Gaussian beam modes.
    Mahon RJ; Murphy JA
    J Opt Soc Am A Opt Image Sci Vis; 2013 Feb; 30(2):215-26. PubMed ID: 23456056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers.
    Sheu FW; Lan TK; Lin YC; Chen S; Ay C
    Opt Express; 2010 Jul; 18(14):14724-9. PubMed ID: 20639958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics of optical tweezers.
    Nieminen TA; Knöner G; Heckenberg NR; Rubinsztein-Dunlop H
    Methods Cell Biol; 2007; 82():207-36. PubMed ID: 17586258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping volume control in optical tweezers using cylindrical vector beams.
    Skelton SE; Sergides M; Saija R; Iatì MA; Maragó OM; Jones PH
    Opt Lett; 2013 Jan; 38(1):28-30. PubMed ID: 23282827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic scattering for a uniaxial anisotropic sphere in an off-axis obliquely incident Gaussian beam.
    Yuan QK; Wu ZS; Li ZJ
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1457-65. PubMed ID: 20508716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term average irradiance profile of an optical beam in a turbulent medium.
    Tavis MT; Yura HT
    Appl Opt; 1976 Nov; 15(11):2922-31. PubMed ID: 20165513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation of a general-type beam through a truncated fractional Fourier transform optical system.
    Zhao C; Cai Y
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):637-47. PubMed ID: 20208958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force.
    Lock JA
    Appl Opt; 2004 Apr; 43(12):2545-54. PubMed ID: 15119624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of T-matrix calculation methods for scattering by cylinders in optical tweezers.
    Qi X; Nieminen TA; Stilgoe AB; Loke VL; Rubinsztein-Dunlop H
    Opt Lett; 2014 Aug; 39(16):4827-30. PubMed ID: 25121885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical representation of Gaussian beams propagating through complex paraxial optical systems.
    Andrews LC; Miller WB; Ricklin JC
    Appl Opt; 1993 Oct; 32(30):5918-29. PubMed ID: 20856413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering.
    Ott D; Reihani SN; Oddershede LB
    Rev Sci Instrum; 2014 May; 85(5):053108. PubMed ID: 24880354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.