These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23456057)

  • 1. Optimal speckle suppression in laser projectors using a single two-dimensional Barker code diffractive optical element.
    Lapchuk A; Kryuchyn A; Petrov V; Klymenko V
    J Opt Soc Am A Opt Image Sci Vis; 2013 Feb; 30(2):227-32. PubMed ID: 23456057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full speckle suppression in laser projectors using two Barker code-type diffractive optical elements.
    Lapchuk A; Kryuchyn A; Petrov V; Yurlov V; Klymenko V
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jan; 30(1):22-31. PubMed ID: 23455999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical schemes for speckle suppression by Barker code diffractive optical elements.
    Lapchuk A; Kryuchyn A; Petrov V; Shyhovets OV; Pashkevich GA; Bogdan OV; Kononov A; Klymenko A
    J Opt Soc Am A Opt Image Sci Vis; 2013 Sep; 30(9):1760-7. PubMed ID: 24323256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of speckle suppression efficiency using a moving 2D Barker code DOE.
    Lapchuk A; Shyhovets OV; Kryuchyn A; Petrov V; Pashkevich GA; Bogdan OV; Kononov A; Klymenko A
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2253-8. PubMed ID: 24322922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experiment evaluation of speckle suppression efficiency of 2D quasi-spiral M-sequence-based diffractive optical element.
    Lapchuk A; Pashkevich GA; Prygun OV; Yurlov V; Borodin Y; Kryuchyn A; Korchovyi AA; Shylo S
    Appl Opt; 2015 Oct; 54(28):E47-54. PubMed ID: 26479664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binary code DOE optimization for speckle suppression in a laser display.
    Yurlov V; Lapchuk A; Han K; Son SJ; Kim BH; Yu NE
    Appl Opt; 2018 Oct; 57(30):8851-8860. PubMed ID: 30461868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental demonstration of a flexible DOE loop with wideband speckle suppression for laser pico-projectors.
    Lapchuk A; Gorbov I; Le Z; Xiong Q; Lu Z; Prygun O; Pankratova A
    Opt Express; 2018 Oct; 26(20):26188-26195. PubMed ID: 30469709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion of speckle suppression efficiency for binary DOE structures: spectral domain and coherent matrix approaches.
    Lapchuk A; Prygun O; Fu M; Le Z; Xiong Q; Kryuchyn A
    Opt Express; 2017 Jun; 25(13):14575-14597. PubMed ID: 28789043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speckle reduction using a motionless diffractive optical element.
    Ouyang G; Tong Z; Akram MN; Wang K; Kartashov V; Yan X; Chen X
    Opt Lett; 2010 Sep; 35(17):2852-4. PubMed ID: 20808346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speckle reduction in line-scan laser projectors using binary phase codes.
    Akram MN; Kartashov V; Tong Z
    Opt Lett; 2010 Feb; 35(3):444-6. PubMed ID: 20125749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speckle suppression in scanning laser display.
    Yurlov V; Lapchuk A; Yun S; Song J; Yang H
    Appl Opt; 2008 Jan; 47(2):179-87. PubMed ID: 18188199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of speckle suppression beyond human eye sensitivity by using a passive multimode fiber and a multimode fiber bundle.
    Lapchuk A; Le Z; Guo Y; Dai Y; Liu Z; Xu Q; Lu Z; Kryuchyn A; Gorbov I
    Opt Express; 2020 Mar; 28(5):6820-6834. PubMed ID: 32225921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-moving Hadamard matrix diffusers for speckle reduction in laser pico-projectors.
    Thomas W; Middlebrook C
    J Mod Opt; 2014 Dec; 61(sup1):S74-S80. PubMed ID: 25705091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-element diffractive optical system for real-time processing of synthetic aperture radar data.
    Roux FS
    Appl Opt; 1995 Aug; 34(23):5045-52. PubMed ID: 21052349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achromatic digital speckle pattern interferometer with constant radial in-plane sensitivity by using a diffractive optical element.
    Viotti MR; Kapp W; Albertazzi G A
    Appl Opt; 2009 Apr; 48(12):2275-81. PubMed ID: 19381178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance laser projection display illumination system based on a diffractive optical element.
    Liang C; Zhang W; Rui D; Sui Y; Yang H
    Appl Opt; 2017 Apr; 56(10):2810-2815. PubMed ID: 28375246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical stress measurement by an achromatic optical digital speckle pattern interferometry strain sensor with radial in-plane sensitivity: experimental comparison with electrical strain gauges.
    Viotti MR; Albertazzi G A; Kapp WA
    Appl Opt; 2011 Mar; 50(7):1014-22. PubMed ID: 21364725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially Multiplexed Speckle on 1D Sensors for High-Speed 2D Sensing Applications.
    Rubio-Oliver R; Sanz M; Sigalov M; GarcĂ­a J; Beiderman Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-diffractive optical elements for wide angle geometric camera calibration.
    Thibault S; Arfaoui A; Desaulniers P
    Opt Lett; 2011 Dec; 36(24):4770-2. PubMed ID: 22179878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on the design of an optical information storage sensing system using a diffractive optical element.
    Cheng X; Hao Q; Hou J; Li X; Ma J; Gu M
    Sensors (Basel); 2013 Nov; 13(11):15409-21. PubMed ID: 24217360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.