BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 23456446)

  • 1. Role of microangiopathy in diabetic cardiomyopathy.
    Adameova A; Dhalla NS
    Heart Fail Rev; 2014 Jan; 19(1):25-33. PubMed ID: 23456446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rutin alleviates diabetic cardiomyopathy and improves cardiac function in diabetic ApoEknockout mice.
    Huang R; Shi Z; Chen L; Zhang Y; Li J; An Y
    Eur J Pharmacol; 2017 Nov; 814():151-160. PubMed ID: 28826911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress and diabetic cardiomyopathy: a brief review.
    Cai L; Kang YJ
    Cardiovasc Toxicol; 2001; 1(3):181-93. PubMed ID: 12213971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-induced cell signaling in the pathogenesis of diabetic cardiomyopathy.
    Mortuza R; Chakrabarti S
    Heart Fail Rev; 2014 Jan; 19(1):75-86. PubMed ID: 23430126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms of cardiac pathology in diabetes - Experimental insights.
    Varma U; Koutsifeli P; Benson VL; Mellor KM; Delbridge LMD
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1949-1959. PubMed ID: 29109032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy.
    Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M
    Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism.
    Wang D; Luo P; Wang Y; Li W; Wang C; Sun D; Zhang R; Su T; Ma X; Zeng C; Wang H; Ren J; Cao F
    Diabetes; 2013 May; 62(5):1697-708. PubMed ID: 23364453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy.
    Frati G; Schirone L; Chimenti I; Yee D; Biondi-Zoccai G; Volpe M; Sciarretta S
    Cardiovasc Res; 2017 Mar; 113(4):378-388. PubMed ID: 28395009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EGFR inhibition protects cardiac damage and remodeling through attenuating oxidative stress in STZ-induced diabetic mouse model.
    Liang D; Zhong P; Hu J; Lin F; Qian Y; Xu Z; Wang J; Zeng C; Li X; Liang G
    J Mol Cell Cardiol; 2015 May; 82():63-74. PubMed ID: 25758431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forkhead box transcription factor 1: role in the pathogenesis of diabetic cardiomyopathy.
    Kandula V; Kosuru R; Li H; Yan D; Zhu Q; Lian Q; Ge RS; Xia Z; Irwin MG
    Cardiovasc Diabetol; 2016 Mar; 15():44. PubMed ID: 26956801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment.
    Falcão-Pires I; Leite-Moreira AF
    Heart Fail Rev; 2012 May; 17(3):325-44. PubMed ID: 21626163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of changes of myocardial angiogenesis and energy metabolism in postinfarction and diabetic damage of rat heart.
    Afanasiev SA; Egorova MV; Kondratyeva DS; Batalov RE; Popov SV
    J Diabetes Res; 2014; 2014():827896. PubMed ID: 24689068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dysfunction and Phenotypic Derangement in Diabetic Cardiomyopathy.
    Evangelista I; Nuti R; Picchioni T; Dotta F; Palazzuoli A
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31269778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Diabetes on Cardiac and Vascular Disease: Role of Calcium Signaling.
    Smani T; Gallardo-Castillo I; Ávila-Médina J; Jimenez-Navarro MF; Ordoñez A; Hmadcha A
    Curr Med Chem; 2019; 26(22):4166-4177. PubMed ID: 28545369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape.
    Haye A; Ansari MA; Rahman SO; Shamsi Y; Ahmed D; Sharma M
    Eur J Pharmacol; 2020 Dec; 888():173376. PubMed ID: 32810493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid.
    Li CJ; Lv L; Li H; Yu DM
    Cardiovasc Diabetol; 2012 Jun; 11():73. PubMed ID: 22713251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms.
    Mahmoud AM
    Adv Exp Med Biol; 2017; 999():207-230. PubMed ID: 29022265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart.
    Zhou G; Li X; Hein DW; Xiang X; Marshall JP; Prabhu SD; Cai L
    J Am Coll Cardiol; 2008 Aug; 52(8):655-66. PubMed ID: 18702970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of VEGFB and its signaling in the diabetic heart is associated with increased cell death signaling.
    Lal N; Chiu AP; Wang F; Zhang D; Jia J; Wan A; Vlodavsky I; Hussein B; Rodrigues B
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1163-H1175. PubMed ID: 28314760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetic cardiomyopathy and oxidative stress: role of antioxidants.
    Thandavarayan RA; Giridharan VV; Watanabe K; Konishi T
    Cardiovasc Hematol Agents Med Chem; 2011 Oct; 9(4):225-30. PubMed ID: 21902660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.