BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 23456729)

  • 21. Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1.
    Sawant SS; Salunke BK; Kim BS
    Bioresour Technol; 2015 Oct; 194():247-55. PubMed ID: 26207871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator.
    Zhang X; Li Y; Zhao X; Bai F
    Bioresour Technol; 2017 Jan; 223():317-322. PubMed ID: 27818160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Cost Cellulase-Hemicellulase Mixture Secreted by
    Zhang Y; Yang J; Luo L; Wang E; Wang R; Liu L; Liu J; Yuan H
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of cellulolytic enzyme components through engineering
    Li YH; Zhang XY; Zhang F; Peng LC; Zhang DB; Kondo A; Bai FW; Zhao XQ
    Biotechnol Biofuels; 2018; 11():49. PubMed ID: 29483942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies.
    Kumar R; Wyman CE
    Bioresour Technol; 2009 Sep; 100(18):4203-13. PubMed ID: 19386492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-liquid pretreatment of corn stover with aqueous ammonia.
    Li X; Kim TH
    Bioresour Technol; 2011 Apr; 102(7):4779-86. PubMed ID: 21277772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride.
    Kovács K; Szakacs G; Zacchi G
    Bioresour Technol; 2009 Feb; 100(3):1350-7. PubMed ID: 18793835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods.
    Ko JK; Ximenes E; Kim Y; Ladisch MR
    Biotechnol Bioeng; 2015 Mar; 112(3):447-56. PubMed ID: 25116138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.
    Borin GP; Sanchez CC; de Souza AP; de Santana ES; de Souza AT; Paes Leme AF; Squina FM; Buckeridge M; Goldman GH; Oliveira JV
    PLoS One; 2015; 10(6):e0129275. PubMed ID: 26053961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and characterization of a new β-glucosidase from Penicillium piceum and its application in enzymatic degradation of delignified corn stover.
    Gao L; Gao F; Zhang D; Zhang C; Wu G; Chen S
    Bioresour Technol; 2013 Nov; 147():658-661. PubMed ID: 24025854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrolytic enzyme of cellulose for complex formulation applied research.
    Lin ZX; Zhang HM; Ji XJ; Chen JW; Huang H
    Appl Biochem Biotechnol; 2011 May; 164(1):23-33. PubMed ID: 20972891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.
    Wang SY; Jiang BL; Zhou X; Chen JH; Li WJ; Liu J; Hu W; Xiao GQ; Dong MY; Wang YC
    PLoS One; 2015; 10(12):e0144233. PubMed ID: 26656155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzyme production by industrially relevant fungi cultured on coproduct from corn dry grind ethanol plants.
    Ximenes EA; Dien BS; Ladisch MR; Mosier N; Cotta MA; Li XL
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):171-83. PubMed ID: 18478386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.
    Zhang F; Bai F; Zhao X
    Biotechnol J; 2016 Oct; 11(10):1282-1290. PubMed ID: 27578229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources.
    Sipos B; Benko Z; Dienes D; Réczey K; Viikari L; Siika-aho M
    Appl Biochem Biotechnol; 2010 May; 161(1-8):347-64. PubMed ID: 19898963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production.
    Hernández C; Milagres AMF; Vázquez-Marrufo G; Muñoz-Páez KM; García-Pérez JA; Alarcón E
    Folia Microbiol (Praha); 2018 Jul; 63(4):467-478. PubMed ID: 29423709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined strategy of transcription factor manipulation and β-glucosidase gene overexpression in Trichoderma reesei and its application in lignocellulose bioconversion.
    Xia Y; Yang L; Xia L
    J Ind Microbiol Biotechnol; 2018 Sep; 45(9):803-811. PubMed ID: 29909592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Onsite enzyme production during bioethanol production from biomass: screening for suitable fungal strains.
    Sørensen A; Teller PJ; Lübeck PS; Ahring BK
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1058-70. PubMed ID: 21360092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover.
    Idris ASO; Pandey A; Rao SS; Sukumaran RK
    Bioresour Technol; 2017 Oct; 242():265-271. PubMed ID: 28366693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.