These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 23456921)
1. Which density functional is close to CCSD accuracy to describe geometry and interaction energy of small non-covalent dimers? A benchmark study using Gaussian09. Remya K; Suresh CH J Comput Chem; 2013 Jun; 34(15):1341-53. PubMed ID: 23456921 [TBL] [Abstract][Full Text] [Related]
2. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Liu Y; Zhao J; Li F; Chen Z J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382 [TBL] [Abstract][Full Text] [Related]
4. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527 [TBL] [Abstract][Full Text] [Related]
5. An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S. Sherrill CD; Takatani T; Hohenstein EG J Phys Chem A; 2009 Sep; 113(38):10146-59. PubMed ID: 19689152 [TBL] [Abstract][Full Text] [Related]
6. Assessment of new meta and hybrid meta density functionals for predicting the geometry and binding energy of a challenging system: the dimer of H2S and benzene. Leverentz HR; Truhlar DG J Phys Chem A; 2008 Jul; 112(26):6009-16. PubMed ID: 18540587 [TBL] [Abstract][Full Text] [Related]
7. Assessment of the accuracy of density functionals for prediction of relative energies and geometries of low-lying isomers of water hexamers. Dahlke EE; Olson RM; Leverentz HR; Truhlar DG J Phys Chem A; 2008 May; 112(17):3976-84. PubMed ID: 18393474 [TBL] [Abstract][Full Text] [Related]
8. A reinvestigation of the dimer of para-benzoquinone and pyrimidine with MP2, CCSD(T), and DFT using functionals including those designed to describe dispersion. Marianski M; Oliva A; Dannenberg JJ J Phys Chem A; 2012 Aug; 116(30):8100-5. PubMed ID: 22765283 [TBL] [Abstract][Full Text] [Related]
9. Halogen bonds with benzene: an assessment of DFT functionals. Forni A; Pieraccini S; Rendine S; Sironi M J Comput Chem; 2014 Feb; 35(5):386-94. PubMed ID: 24339225 [TBL] [Abstract][Full Text] [Related]
10. TD-CI simulation of the electronic optical response of molecules in intense fields II: comparison of DFT functionals and EOM-CCSD. Sonk JA; Schlegel HB J Phys Chem A; 2011 Oct; 115(42):11832-40. PubMed ID: 21923137 [TBL] [Abstract][Full Text] [Related]
11. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory. Pai CC; Li AH; Chao SD J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367 [TBL] [Abstract][Full Text] [Related]
12. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer. Pitonák M; Riley KE; Neogrády P; Hobza P Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830 [TBL] [Abstract][Full Text] [Related]
13. A Systematic Study of DFT Performance for Geometry Optimizations of Ionic Liquid Clusters. Seeger ZL; Izgorodina EI J Chem Theory Comput; 2020 Oct; 16(10):6735-6753. PubMed ID: 32865998 [TBL] [Abstract][Full Text] [Related]
14. Differences in structure, energy, and spectrum between neutral, protonated, and deprotonated phenol dimers: comparison of various density functionals with ab initio theory. Kołaski M; Kumar A; Singh NJ; Kim KS Phys Chem Chem Phys; 2011 Jan; 13(3):991-1001. PubMed ID: 21063580 [TBL] [Abstract][Full Text] [Related]
15. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level. Dabkowska I; Jurecka P; Hobza P J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739 [TBL] [Abstract][Full Text] [Related]
16. Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. Zhao Y; Truhlar DG J Phys Chem A; 2006 Apr; 110(15):5121-9. PubMed ID: 16610834 [TBL] [Abstract][Full Text] [Related]
17. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Goerigk L; Grimme S Phys Chem Chem Phys; 2011 Apr; 13(14):6670-88. PubMed ID: 21384027 [TBL] [Abstract][Full Text] [Related]
18. Accurate interaction energies at density functional theory level by means of an efficient dispersion correction. Krishtal A; Vanommeslaeghe K; Olasz A; Veszprémi T; Van Alsenoy C; Geerlings P J Chem Phys; 2009 May; 130(17):174101. PubMed ID: 19425763 [TBL] [Abstract][Full Text] [Related]
19. Benchmark of density functional theory methods on the prediction of bond energies and bond distances of noble-gas containing molecules. Lai TY; Yang CY; Lin HJ; Yang CY; Hu WP J Chem Phys; 2011 Jun; 134(24):244110. PubMed ID: 21721615 [TBL] [Abstract][Full Text] [Related]
20. Ab initio calculations on halogen-bonded complexes and comparison with density functional methods. Lu YX; Zou JW; Fan JC; Zhao WN; Jiang YJ; Yu QS J Comput Chem; 2009 Apr; 30(5):725-32. PubMed ID: 18727160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]