BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23457040)

  • 61. Improving the quality of barley transcriptome de novo assembling by using a hybrid approach for lines with varying spike and stem coloration.
    Shmakov NА
    Vavilovskii Zhurnal Genet Selektsii; 2021 Feb; 25(1):30-38. PubMed ID: 34901701
    [TBL] [Abstract][Full Text] [Related]  

  • 62. TransComb: genome-guided transcriptome assembly via combing junctions in splicing graphs.
    Liu J; Yu T; Jiang T; Li G
    Genome Biol; 2016 Oct; 17(1):213. PubMed ID: 27760567
    [TBL] [Abstract][Full Text] [Related]  

  • 63. FBB: a fast Bayesian-bound tool to calibrate RNA-seq aligners.
    Rodriguez-Lujan I; Hasty J; Huerta R
    Bioinformatics; 2017 Jan; 33(2):210-218. PubMed ID: 27663496
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Sensitive and Accurate protein domain cLassification Tool (SALT) for short reads.
    Zhang Y; Sun Y; Cole JR
    Bioinformatics; 2013 Sep; 29(17):2103-11. PubMed ID: 23782615
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rainbow: an integrated tool for efficient clustering and assembling RAD-seq reads.
    Chong Z; Ruan J; Wu CI
    Bioinformatics; 2012 Nov; 28(21):2732-7. PubMed ID: 22942077
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Efficient RNA isoform identification and quantification from RNA-Seq data with network flows.
    Bernard E; Jacob L; Mairal J; Vert JP
    Bioinformatics; 2014 Sep; 30(17):2447-55. PubMed ID: 24813214
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The impacts of read length and transcriptome complexity for de novo assembly: a simulation study.
    Chang Z; Wang Z; Li G
    PLoS One; 2014; 9(4):e94825. PubMed ID: 24736633
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Telescoper: de novo assembly of highly repetitive regions.
    Bresler M; Sheehan S; Chan AH; Song YS
    Bioinformatics; 2012 Sep; 28(18):i311-i317. PubMed ID: 22962446
    [TBL] [Abstract][Full Text] [Related]  

  • 69. CStone: A de novo transcriptome assembler for short-read data that identifies non-chimeric contigs based on underlying graph structure.
    Linheiro R; Archer J
    PLoS Comput Biol; 2021 Nov; 17(11):e1009631. PubMed ID: 34813594
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Genome-scale de novo assembly using ALGA.
    Swat S; Laskowski A; Badura J; Frohmberg W; Wojciechowski P; Swiercz A; Kasprzak M; Blazewicz J
    Bioinformatics; 2021 Jul; 37(12):1644-1651. PubMed ID: 33471088
    [TBL] [Abstract][Full Text] [Related]  

  • 71. TransLiG: a de novo transcriptome assembler that uses line graph iteration.
    Liu J; Yu T; Mu Z; Li G
    Genome Biol; 2019 Apr; 20(1):81. PubMed ID: 31014374
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The present and future of de novo whole-genome assembly.
    Sohn JI; Nam JW
    Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661
    [TBL] [Abstract][Full Text] [Related]  

  • 73. GIIRA--RNA-Seq driven gene finding incorporating ambiguous reads.
    Zickmann F; Lindner MS; Renard BY
    Bioinformatics; 2014 Mar; 30(5):606-13. PubMed ID: 24123675
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-Seq data.
    Chopra R; Burow G; Farmer A; Mudge J; Simpson CE; Burow MD
    PLoS One; 2014; 9(12):e115055. PubMed ID: 25551607
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads.
    Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631
    [TBL] [Abstract][Full Text] [Related]  

  • 76. cloudSPAdes: assembly of synthetic long reads using de Bruijn graphs.
    Tolstoganov I; Bankevich A; Chen Z; Pevzner PA
    Bioinformatics; 2019 Jul; 35(14):i61-i70. PubMed ID: 31510642
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Integration of string and de Bruijn graphs for genome assembly.
    Huang YT; Liao CF
    Bioinformatics; 2016 May; 32(9):1301-7. PubMed ID: 26755626
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Updating RNA-Seq analyses after re-annotation.
    Roberts A; Schaeffer L; Pachter L
    Bioinformatics; 2013 Jul; 29(13):1631-7. PubMed ID: 23677943
    [TBL] [Abstract][Full Text] [Related]  

  • 79. powsimR: power analysis for bulk and single cell RNA-seq experiments.
    Vieth B; Ziegenhain C; Parekh S; Enard W; Hellmann I
    Bioinformatics; 2017 Nov; 33(21):3486-3488. PubMed ID: 29036287
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optimizing RNA-Seq Mapping with STAR.
    Dobin A; Gingeras TR
    Methods Mol Biol; 2016; 1415():245-62. PubMed ID: 27115637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.