BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23457190)

  • 1. Secretion of quinolinic acid, an intermediate in the kynurenine pathway, for utilization in NAD+ biosynthesis in the yeast Saccharomyces cerevisiae.
    Ohashi K; Kawai S; Murata K
    Eukaryot Cell; 2013 May; 12(5):648-53. PubMed ID: 23457190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uridine monophosphate synthetase enables eukaryotic
    McReynolds MR; Wang W; Holleran LM; Hanna-Rose W
    J Biol Chem; 2017 Jul; 292(27):11147-11153. PubMed ID: 28559281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The copper-sensing transcription factor Mac1, the histone deacetylase Hst1, and nicotinic acid regulate
    James Theoga Raj C; Croft T; Venkatakrishnan P; Groth B; Dhugga G; Cater T; Lin SJ
    J Biol Chem; 2019 Apr; 294(14):5562-5575. PubMed ID: 30760525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential role of Bordetella NadC in a quinolinate salvage pathway for NAD biosynthesis.
    Brickman TJ; Suhadolc RJ; McKelvey PJ; Armstrong SK
    Mol Microbiol; 2017 Feb; 103(3):423-438. PubMed ID: 27783449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinolinate as a Marker for Kynurenine Metabolite Formation and the Unresolved Question of NAD
    Moffett JR; Arun P; Puthillathu N; Vengilote R; Ives JA; Badawy AA; Namboodiri AM
    Front Immunol; 2020; 11():31. PubMed ID: 32153556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kynurenine pathway activities in a sub-Saharan HIV/AIDS population.
    Bipath P; Levay PF; Viljoen M
    BMC Infect Dis; 2015 Aug; 15():346. PubMed ID: 26285873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae.
    Sporty J; Lin SJ; Kato M; Ognibene T; Stewart B; Turteltaub K; Bench G
    Yeast; 2009 Jul; 26(7):363-9. PubMed ID: 19399913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in Kynurenine and NAD
    Wnorowski A; Wnorowska S; Kurzepa J; Parada-Turska J
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae.
    Panozzo C; Nawara M; Suski C; Kucharczyka R; Skoneczny M; Bécam AM; Rytka J; Herbert CJ
    FEBS Lett; 2002 Apr; 517(1-3):97-102. PubMed ID: 12062417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why do some yeast species require niacin for growth? Different modes of NAD synthesis.
    Li YF; Bao WG
    FEMS Yeast Res; 2007 Aug; 7(5):657-64. PubMed ID: 17425674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Basic and salvage pathways of NAD biosynthesis in organs of normal rats, tumor-bearing rats and in tumors].
    Reztsova VV; Filov VA; Ivin BA; Kon'kov SA; Krylova IM
    Vopr Onkol; 1994; 40(1-3):68-71. PubMed ID: 7701797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperthermophilic Archaeon Thermococcus kodakarensis Utilizes a Four-Step Pathway for NAD
    Hachisuka SI; Sato T; Atomi H
    J Bacteriol; 2018 Jun; 200(11):. PubMed ID: 29555696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress.
    Sahm F; Oezen I; Opitz CA; Radlwimmer B; von Deimling A; Ahrendt T; Adams S; Bode HB; Guillemin GJ; Wick W; Platten M
    Cancer Res; 2013 Jun; 73(11):3225-34. PubMed ID: 23548271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD biosynthesis evolution in bacteria: lateral gene transfer of kynurenine pathway in Xanthomonadales and Flavobacteriales.
    Lima WC; Varani AM; Menck CF
    Mol Biol Evol; 2009 Feb; 26(2):399-406. PubMed ID: 19005186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria.
    Kurnasov O; Goral V; Colabroy K; Gerdes S; Anantha S; Osterman A; Begley TP
    Chem Biol; 2003 Dec; 10(12):1195-204. PubMed ID: 14700627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4-Chloro-3-hydroxyanthranilate, 6-chlorotryptophan and norharmane attenuate quinolinic acid formation by interferon-gamma-stimulated monocytes (THP-1 cells).
    Saito K; Chen CY; Masana M; Crowley JS; Markey SP; Heyes MP
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):11-4. PubMed ID: 8471029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo biosynthesis of nicotinamide adenine dinucleotide in Escherichia coli: excretion of quinolinic acid by mutants lacking quinolinate phosphoribosyl transferase.
    Chandler JL; Gholson RK
    J Bacteriol; 1972 Jul; 111(1):98-102. PubMed ID: 4360223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse.
    Saito K; Markey SP; Heyes MP
    Neuroscience; 1992 Nov; 51(1):25-39. PubMed ID: 1465184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan-Dependent Control of Colony Formation After DNA Damage via Sea3-Regulated TORC1 Signaling in Saccharomyces cerevisiae.
    Polleys EJ; Bertuch AA
    G3 (Bethesda); 2015 May; 5(7):1379-89. PubMed ID: 25943524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for increased de novo synthesis of NAD in immune-activated RAW264.7 macrophages: a self-protective mechanism?
    Grant RS; Passey R; Matanovic G; Smythe G; Kapoor V
    Arch Biochem Biophys; 1999 Dec; 372(1):1-7. PubMed ID: 10562410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.